Simultaneous satellite observations of IO and BrO over Antarctica

Author:

Schönhardt A.,Begoin M.,Richter A.,Wittrock F.,Kaleschke L.,Gómez Martín J. C.,Burrows J. P.

Abstract

Abstract. This article reports on satellite observations of iodine monoxide (IO) and bromine monoxide (BrO). The region of interest is Antarctica in the time between spring and autumn. Both molecules, IO and BrO, are reactive halogen species and strongly influence tropospheric composition. As a result, a better understanding of their spatial distribution and temporal evolution is necessary to assess accurately their role in tropospheric chemistry. Especially in the case of IO, information on its present magnitude, spatial distribution patterns and source regions is still sparse. The present study is based on six years of SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY) data recorded in nadir viewing geometry. Multi-year averages of monthly mean IO columns are presented and compared to the distributions of BrO. Influences of the IO air mass factor and the IO absorption cross section temperature dependence on the absolute vertical columns are discussed. The long-term observations of IO and BrO columns yield new insight into the temporal and spatial variation of IO above the Antarctic region. The occurrence of IO on Antarctic sea ice in late spring (November) is discovered and presented. In addition, the comparison between IO and BrO distributions show many differences, which argues for different mechanisms and individual nature of the release of the two halogen oxide precursors. The state of the ecosystem, in particular the changing condition of the sea ice in late spring, is used to explain the observations of the IO behaviour over Antarctica and the differences between IO and BrO distributions.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3