Morphology, composition and mixing state of individual carbonaceous aerosol in urban Shanghai

Author:

Fu H.,Zhang M.,Li W.,Chen J.,Wang L.,Quan X.,Wang W.

Abstract

Abstract. A total of 834 individual aerosol particles were collected during October and November 2010 in urban Shanghai, China. Particles were sampled under different weather and air quality conditions. Morphologies, compositions and mixing states of carbonaceous aerosols were investigated by transmission electron microscopy (TEM) coupled with energy-dispersive X-ray (EDX). Structures of some particles were verified using selected-area electron diffraction (SAED). Among the aerosol particles observed, carbonaceous aerosols were mainly categorized into four types: polymeric organic compound (POC), soot, tar ball, and biogenic particle. Based on the detailed TEM-EDX analysis, most of the particles were coated with secondary organic aerosols (SOA), which commonly formed through condensation or heterogeneous reactions of precursor gases on pre-existing particles. Aged particles were associated with days with low wind velocities, showed complex structures, and were bigger in size. The internally mixed particles of sulphates, organics and soot were encountered frequently. Such internally mixed particles may be preferentially formed during a stagnated air mass during serious pollution events, such as on 13 November. Although relative number counts varied with different species, sulphates (38–71%) and soot (11–22%) constituted the most dominant species observed in the samples. However, soil-derived particles (68%) were relatively more frequently observed on the sample collected on 12 November during a dust storm.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3