Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis
-
Published:2016-02-11
Issue:1
Volume:10
Page:341-358
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Harp D. R.ORCID, Atchley A. L.ORCID, Painter S. L., Coon E. T., Wilson C. J.ORCID, Romanovsky V. E.ORCID, Rowland J. C.
Abstract
Abstract. The effects of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The null-space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of predictive uncertainty (due to soil property (parametric) uncertainty) and the inter-annual climate variability due to year to year differences in CESM climate forcings. After calibrating to measured borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant predictive uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Inter-annual climate variability in projected soil moisture content and Stefan number are small. A volume- and time-integrated Stefan number decreases significantly, indicating a shift in subsurface energy utilization in the future climate (latent heat of phase change becomes more important than heat conduction). Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we quantify the relative magnitude of soil property uncertainty to another source of permafrost uncertainty, structural climate model uncertainty. We show that the effect of calibration-constrained uncertainty in soil properties, although significant, is less than that produced by structural climate model uncertainty for this location.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference64 articles.
1. Atchley, A. L., Painter, S. L., Harp, D. R., Coon, E. T., Wilson, C. J.,
Liljedahl, A. K., and Romanovsky, V. E.: Using field observations
to inform thermal hydrology models of permafrost dynamics with ATS (v0.83),
Geosci. Model Dev., 8, 2701–2722,
https://doi.org/10.5194/gmd-8-2701-2015, 2015. 2. Beringer, J., Lynch, A. H., Chapin III, F. S., Mack, M., and Bonan, G. B.:
The
representation of arctic soils in the land surface model: the importance of
mosses, J. Climate, 14, 3324–3335, 2001. 3. Chadburn, S., Burke, E., Essery, R., Boike, J., Langer, M., Heikenfeld, M.,
Cox, P., and Friedlingstein, P.: Impact of model developments on present and
future simulations of permafrost in a global land-surface model, The
Cryosphere, 9, 1505–1521, https://doi.org/10.5194/tc-9-1505-2015, 2015a. 4. Chadburn, S., Burke, E., Essery, R., Boike, J., Langer, M., Heikenfeld, M.,
Cox, P., and Friedlingstein, P.: An improved representation of physical
permafrost dynamics in the JULES land-surface model, Geosci. Model Dev.,
8, 1493–1508, https://doi.org/10.5194/gmd-8-1493-2015, 2015b. 5. Clapp, R. B. and Hornberger, G. M.: Empirical equations for some soil
hydraulic properties, Water Resour. Res., 14, 601–604, 1978.
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|