Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)

Author:

Atchley A. L.ORCID,Painter S. L.,Harp D. R.ORCID,Coon E. T.,Wilson C. J.ORCID,Liljedahl A. K.ORCID,Romanovsky V. E.ORCID

Abstract

Abstract. Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. However, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth system models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth system models challenge validation and parameterization of hydrothermal models. A recently developed surface–subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurements to achieve the goals of constructing a process-rich model based on plausible parameters and to identify fine-scale controls of ALT in ice-wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze–thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g., troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.

Publisher

Copernicus GmbH

Reference90 articles.

1. Anderson, E. A.: A point energy and mass balance model of a snow cover, NOAA Tech. Rep., NWS-19, 1976.

2. Atmospheric Radiation Measurement (ARM) Climate Research Facility:. Surface Meteorological Instrumentation (MET). 2010-01-01 to 2013-12-31, 71.323 N 156.609 W: North Slope Alaska (NSA) Central Facility, Barrow AK (C1), compiled by: Kyrouac, J. and Holdridge, D., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive: Oak Ridge, Tennessee, USA, http://dx.doi.org/10.5439/1025220, updated hourly (last access: 19 May 2014), 1993.

3. Atmospheric Radiation Measurement (ARM) Climate Research Facility: Sky Radiometers on Stand for Downwelling Radiation (SKYRAD60S). 2010-01-01 to 2013-12-31, 71.323 N 156.609 W: North Slope Alaska (NSA) Central Facility, Barrow AK (C1), compiled by: Morris, V., Sengupta, M., Habte, A., Reda, I., Anderberg, M., Dooraghi, M., Gotseff, P., Morris, V., Andreas, A., and Kutchenreiter, M., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive, Oak Ridge, Tennessee, USA, available at: http://dx.doi.org/10.5439/1025281, updated hourly (last access: 19 May 2014), 1996.

4. Benson, C. S. and Sturm, M.: Structure and wind transport of seasonal snow on the Arctic slope of Alaska, Ann. Glaciol., 18, 261–267, 1993.

5. Beringer, J., Lynch, A. H., Chapin III, F. S., Mack, M., and Bonan, G. B.: The representation of Arctic soils in the Land Surface Model: The importance of Mosses, J. Climate, 14, 3324–3335, 2001.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3