Using an integrated method to estimate watershed sediment yield during heavy rain period: a case study in Hualien County, Taiwan

Author:

Hsu S. M.,Wen H. Y.,Chen N. C.,Hsu S. Y.,Chi S. Y.

Abstract

Abstract. A comprehensive approach estimating sediment yield from a watershed is needed to develop better measures for mitigating sediment disasters and assessing downstream impacts. In the present study, an attempt has been made to develop an integrated method, considering sediment supplies associated with soil erosion, shallow landslide and debris flow to estimate sediment yield from a debris-flow-prone watershed on a storm event basis. The integrated method is based on the HSPF and TRIGRS models for predicting soil erosion and shallow landslide sediment yield, and the FLO-2D model for calculating debris flow sediment yield. The proposed method was applied to potential debris-flow watersheds located in the Sioulin Township of Hualien County. The available data such as hourly rainfall data, historical streamflow and sediment records as well as event-based landslide inventory maps have been used for model calibration and validation. Results for simulating sediment yield have been confirmed by comparisons of observed data from several typhoon events. The verified method employed a 24-h design hyetograph with the 100-yr return period to simulate sediment yield within the study area. The results revealed that the influence of shallow landslides on sediment supply as compared with soil erosion was significant. The estimate of landslide transport capacity into a main channel indicated the sediment delivery ratio on a typhoon event basis was approximately 38.4%. In addition, a comparison of sediment yields computed from occurrence and non-occurrence of debris flow scenarios showed that the sediment yield from an occurrence condition was found to be increasing at about 14.2 times more than estimated under a non-occurrence condition. This implied watershed sediment hazard induced by debris flow may cause severe consequences.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3