Nonlinear run-ups of regular waves on sloping structures

Author:

Hsu T.-W.,Liang S.-J.,Young B.-D.,Ou S.-H.

Abstract

Abstract. For coastal risk mapping, it is extremely important to accurately predict wave run-ups since they influence overtopping calculations; however, nonlinear run-ups of regular waves on sloping structures are still not accurately modeled. We report the development of a high-order numerical model for regular waves based on the second-order nonlinear Boussinesq equations (BEs) derived by Wei et al. (1995). We calculated 160 cases of wave run-ups of nonlinear regular waves over various slope structures. Laboratory experiments were conducted in a wave flume for regular waves propagating over three plane slopes: tan α =1/5, 1/4, and 1/3. The numerical results, laboratory observations, as well as previous datasets were in good agreement. We have also proposed an empirical formula of the relative run-up in terms of two parameters: the Iribarren number ξ and sloping structures tan α. The prediction capability of the proposed formula was tested using previous data covering the range ξ ≤ 3 and 1/5 ≤ tan α ≤ 1/2 and found to be acceptable. Our study serves as a stepping stone to investigate run-up predictions for irregular waves and more complex geometries of coastal structures.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3