Numerical study of wave run-up on sea dikes with vegetated foreshores

Author:

Wang YanxuORCID,Yin ZegaoORCID,Qiu QuanlinORCID,Yang GuilinORCID,Yin Dapeng

Abstract

Integrating coastal vegetation into sea dikes is a nature-based approach aimed at combining disaster prevention with ecological sustainability in coastal areas. This study investigates the impact of vegetation on the wave run-up on dikes through numerical analysis. The numerical model used in the study solves the Reynolds-averaged Navier–Stokes equations by adding a vegetation resistance force to account for momentum loss. A stabilized k–ω shear stress transport model considering the vegetation effect was adopted for turbulence closure. A series of numerical simulations was carried out on the wave run-up (Ru) on dikes, focusing on the effects of different vegetation heights, densities, zone lengths, and dike slopes under various wave conditions. The results indicate that vegetation can significantly decrease Ru and may cause the wave to change from breaking to nonbreaking on dikes. The Ru behaviors depend on whether waves break and can be well characterized by the Iribarren number and dimensionless wave momentum flux parameter under breaking and nonbreaking conditions, respectively. Finally, the multivariate non-linear regression (MNLR) and artificial neural network (ANN) methods were adopted to explore a prediction model for evaluating Ru. Comparisons showed that the prediction performance of the ANN model is superior to that of the MNLR model. The ANN model has the potential as a promising predictive tool for obtaining wave run-up on dikes with vegetated foreshores under breaking and nonbreaking conditions.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3