Finite lattice distortion patterns in plastically deformed zircon grains

Author:

Kovaleva E.,Klötzli U.,Habler G.,Libowitzky E.

Abstract

Abstract. This study examines finite deformation patterns of zircon grains from high-temperature natural shear zones. Various zircon-bearing rocks were collected in the Western Tauern Window, Eastern Alps, where they were deformed under amphibolite facies conditions, and in the Ivrea-Verbano Zone (IVZ), Southern Alps, where deformation is related with granulite-facies metamorphism. Among the sampled rocks are: granitic orthogneisses, meta-lamprophyres and paragneisses, all of which are highly deformed. The investigated zircon grains ranging from 10 to 50 microns were studied in situ using a combination of scanning electron microscope (SEM) techniques, including secondary electron (SE), backscattered electron (BSE), forward scattered electron (FSE), cathodoluminescence (CL) imaging, and crystallographic orientation mapping by electron backscatter diffraction analysis (EBSD), as well as micro-Raman spectroscopy. Energy-dispersive X-ray spectrometry (EDS) was applied to host phases. Microstructural analysis of crystal-plastically deformed zircon grains was based on high-resolution EBSD maps. Three general types of finite lattice distortion patterns were detected: Type (I) is defined by gradual bending of the zircon lattice with orientation changes of about 0.6° to 1.4° per μm without subgrain boundary formation. Type (II) represents local gradual bending of the crystal lattice coupled with the formation of subgrain boundaries that have concentric semicircular shapes in 2-D sections. Cumulative grain-internal orientation variations range from 7° to 40° within single grains. Type (III) is characterized by formation of subgrains separated by a well-defined subgrain boundary network, where subgrain boundaries show a characteristic angular closed contour in 2-D sections. The cumulative orientation variation within a single grain ranges from 3° to 10°. Types (I) and (II) predominate in granulite facies rocks, whereas type (III) is restricted to the amphibolite facies rocks. Investigated microstructures demonstrate that misorientation axes are usually parallel to the ⟨ 001 ⟩ and ⟨ 100 ⟩ crystallographic directions; dominant slip systems operating along tilt boundaries are ⟨ 010 ⟩{001}, ⟨ 010 ⟩{100} and ⟨ 001 ⟩{010}. In case of twist boundaries the slip systems ⟨ 010 ⟩{001} and ⟨ 100 ⟩ {001} are active, whereas in some grains cross-slip takes place. This study demonstrates that activation of energetically preferable slip systems is mostly controlled by the degree of coupling with the host phase and by the viscosity ratio between inclusion and host, and defined by crystallographic and elastic anisotropy of the zircon lattice.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3