Model calculations of the effects of present and future emissions of air pollutants from shipping in the Baltic Sea and the North Sea

Author:

Jonson J. E.,Jalkanen J. P.ORCID,Johansson L.,Gauss M.,Denier van der Gon H. A. C.ORCID

Abstract

Abstract. Land-based emissions of air pollutants in Europe have steadily decreased over the past two decades, and this decrease is expected to continue. Within the same time span emissions from shipping have increased in EU ports and in the Baltic Sea and the North Sea, defined as SECAs (sulfur emission control areas), although recently sulfur emissions, and subsequently particle emissions, have decreased. The maximum allowed sulfur content in marine fuels in EU ports is now 0.1%, as required by the European Union sulfur directive. In the SECAs the maximum fuel content of sulfur is currently 1% (the global average is about 2.4%). This will be reduced to 0.1% from 2015, following the new International Maritime Organization (IMO) rules. In order to assess the effects of ship emissions in and around the Baltic Sea and the North Sea, regional model calculations with the EMEP air pollution model have been made on a 1/4° longitude × 1/8° latitude resolution, using ship emissions in the Baltic Sea and the North Sea that are based on accurate ship positioning data. The effects on depositions and air pollution and the resulting number of years of life lost (YOLLs) have been calculated by comparing model calculations with and without ship emissions in the two sea areas. In 2010 stricter regulations for sulfur emissions were implemented in the two sea areas, reducing the maximum sulfur content allowed in marine fuels from 1.5 to 1%. In addition ships were required to use fuels with 0.1 % sulfur in EU harbours. The calculations have been made with emissions representative of 2009 and 2011, i.e. before and after the implementation of the stricter controls on sulfur emissions from 2010. The calculations with present emissions show that per person, an additional 0.1–0.2 years of life lost is estimated in areas close to the major ship tracks with current emission levels. Comparisons of model calculations with emissions before and after the implementation of stricter emission control on sulfur show a general decrease in calculated particle concentration. At the same time, however, an increase in ship activity has resulted in higher emissions of other components, and subsequently air concentrations, in particular of NOx, especially in and around several major ports. Additional model calculations have been made with land-based and ship emissions representative of year 2030. Following a decrease in emissions from all sectors, air quality is expected to improve, and depositions to be reduced. Particles from shipping are expected to decrease as a result of emission controls in the SECAs. Further controls of NOx emissions from shipping are not decided, and calculations are presented with and without such controls.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference39 articles.

1. Amann, M., Heyes, C., Schöpp, W., and Mechler, R.: Modelling of Health Impacts of Fine Particles, in the rains review 2004, IIASA, available at: www.iiasa.ac.at/rains/review/review-healthpm.pdf (last access: 11 August 2014), 2004.

2. Amann, M., Borken, J., Böttcher, H., Cofala, J., Hettelingh, J., Heyes, C., Holland, M., Hunt, A., Klimont, Z., Mantzos, L., l. Ntziachristos, Obersteiner, M., Posch, M., Schneider, U., Schöpp, W., Slootweg, J., Witzke, P., Wagner, A., and Winiwarter, W.: Greenhouse gases and air pollutants in the European Union: baseline projections up to 2030, Ec4macs interim assessment, IIASA, available at: http://webarchive.iiasa.ac.at/rains/reports/EC4MACS_IR_11.pdf (last access: 11 August 2014), 2011.

3. Andersson, C., Bergström, R., and Johansson, C.: Population exposure and mortality due to regional background PM in Europe – Long term simulations of source region and and shipping contributions, Atmos. Environ., 43, 3614–3620, 2009.

4. Angelbratt, J., Mellqvist, J., Simpson, D., Jonson, J. E., Blumenstock, T., Borsdorff, T., Duchatelet, P., Forster, F., Hase, F., Mahieu, E., De Mazière, M., Notholt, J., Petersen, A. K., Raffalski, U., Servais, C., Sussmann, R., Warneke, T., and Vigouroux, C.: Carbon monoxide (CO) and ethane (C2H6) trends from ground-based solar FTIR measurements at six European stations, comparison and sensitivity analysis with the EMEP model, Atmos. Chem. Phys., 11, 9253–9269, https://doi.org/10.5194/acp-11-9253-2011, 2011.

5. Beekmann, M., and Vautard, R.: A modelling study of photochemical regimes over Europe:robustness and variability, Atmos. Chem. Phys., 10, 10067–10084, https://doi.org/10.5194/acp-10-10067-2010, 2010.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3