Exposure to closed-loop scrubber washwater alters biodiversity, reproduction, and grazing of marine zooplankton

Author:

Jönander Christina,Egardt Jenny,Hassellöv Ida-Maja,Tiselius Peter,Rasmussen Matilda,Dahllöf Ingela

Abstract

Shipping is a large industry responsible for atmospheric emissions of hazardous substances including SOX, NOX, and particulate matter. Many ships have installed exhaust gas cleaning systems (scrubbers) to remove primarily SOX from the exhaust, but the hazardous substances are instead transferred to the water used in the scrubbing process. Ships with closed-loop scrubbers recirculate the water but can still discharge around 126-150 m3 directly to the surrounding marine environment every day. The discharged water contains metals and organic substances, such as polycyclic aromatic hydrocarbons, that are known to be toxic to marine zooplankton. Here we show that closed-loop scrubber washwater is toxic to communities of marine mesozooplankton at our lowest tested dilution, 1.5% (v/v), and affects survival, reproduction, diversity, and ability to predate on microzooplankton. The cumulative toxic unit of the undiluted closed-loop scrubber washwater was estimated to 17, which indicates that the water could be toxic at levels below what was tested in this study. Among all detected substances, vanadium, copper, benzo[ghi]perylene, nickel, and zinc were identified as toxicity-driving substances in the order listed. Closed-loop scrubber washwater has been shown to affect development and survival in single species of copepods, but here we find evidence of toxicity at the community level, irrespective of seasonal community structure, and that the exposure has potential to disrupt the interactions between trophic levels in the pelagic food web. We show that the closed-loop scrubber washwater cause both lethal and sublethal effects in marine zooplankton, due to contaminants, some of which are persistent in the marine environment.

Funder

Svenska Forskningsrådet Formas

Havs- och Vattenmyndigheten

Horizon 2020 Framework Programme

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3