Photochemical impacts of haze pollution in an urban environment

Author:

Hollaway MichaelORCID,Wild OliverORCID,Yang Ting,Sun YeleORCID,Xu Weiqi,Xie Conghui,Whalley Lisa,Slater Eloise,Heard DwayneORCID,Liu DantongORCID

Abstract

Abstract. Rapid economic growth in China over the past 30 years has resulted in significant increases in the concentrations of small particulates (PM2.5) over the city of Beijing. In addition to health problems, high aerosol loading can impact visibility and thus reduce photolysis rates over the city, leading to potential implications for photochemistry. Photolysis rates are highly sensitive not only to the vertical distribution of aerosols but also to their composition, as this can impact how the incoming solar radiation is scattered or absorbed. This study, for the first time, uses aerosol composition measurements and lidar optical depth to drive the Fast-JX photolysis scheme and quantify the photochemical impacts of different aerosol species during the Air Pollution and Human Health (APHH) measurement campaigns in Beijing in November–December 2016 and May–June 2017. This work demonstrates that severe haze pollution events (PM2.5 > 75 µg m−3) occur during both winter and summer, leading to reductions in O3 photolysis rates of 27 %–34 % (greatest in winter) and reductions in NO2 photolysis of 40 %–66 % (greatest in summer) at the surface. It also shows that in spite of much lower PM2.5 concentrations in the summer months, the absolute changes in photolysis rates are larger for both O3 and NO2. In the winter, absorbing species such as black carbon dominate the photolysis response to aerosols, leading to mean reductions in J[O1D] and J[NO2] in the lowest 1 km of 24 % and 23 %, respectively. In contrast, in the summer, scattering aerosol such as organic matter dominate the response, leading to mean decreases of 2 %–3 % at the surface and increases of 8 %–10 % at higher altitudes (3–4 km). During these haze events in both campaigns, the influence of aerosol on photolysis rates dominates over that from clouds. These large impacts on photochemistry can have significant implications for concentrations of important atmospheric oxidants such as the hydroxyl radical. Idealized photochemical box model studies show that such large impacts on photochemistry could lead to a 12 % reduction in surface O3 (3 % for OH) due to haze pollution. This highlights that PM2.5 mitigation strategies could have important implications for the oxidation capacity of the atmosphere both at the surface and in the free troposphere.

Funder

Natural Environment Research Council

Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3