Spectral analysis approach for assessing the accuracy of low-cost air quality sensor network data

Author:

Kumar Vijay,Senarathna Dinushani,Gurajala Supraja,Olsen William,Sur Shantanu,Mondal Sumona,Dhaniyala SureshORCID

Abstract

Abstract. Extensive monitoring of particulate matter (PM) smaller than 2.5 µm, i.e., PM2.5, is critical for understanding changes in local air quality due to policy measures. With the emergence of low-cost air quality sensor networks, high spatiotemporal measurements of air quality are now possible. However, the sensitivity, noise, and accuracy of field data from such networks are not fully understood. In this study, we use spectral analysis of a 2-year data record of PM2.5 from both the Environmental Protection Agency (EPA) and PurpleAir (PA), a low-cost sensor network, to identify the contributions of individual periodic sources to local air quality in Chicago. We find that sources with time periods of 4, 8, 12, and 24 h have significant but varying relative contributions to the data for both networks. Further analysis reveals that the 8 and 12 h sources are traffic-related and photochemistry-driven, respectively, and that the contributions of both these sources are significantly lower in the PA data than in the EPA data. The presence of distinct peaks in the power spectrum analysis highlights recurring patterns in the air quality data; however, the underlying factors contributing to these peaks require further investigation and validation. We also use a correction model that accounts for the contribution of relative humidity and temperature, and we observe that the PA temporal components can be made to match those of the EPA over the medium and long term but not over the short term. Thus, standard approaches to improve the accuracy of low-cost sensor network data will not result in unbiased measurements. The strong source dependence of low-cost sensor network measurements demands exceptional care in the analysis of ambient data from these networks, particularly when used to evaluate and drive air quality policies.

Funder

Higher Education Commision, Pakistan

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3