Stochastic downscaling of precipitation in complex orography: a simple method to reproduce a realistic fine-scale climatology

Author:

Terzago Silvia,Palazzi ElisaORCID,von Hardenberg JostORCID

Abstract

Abstract. Stochastic rainfall downscaling methods usually do not take into account orographic effects or local precipitation features at spatial scales finer than those resolved by the large-scale input field. For this reason they may be less reliable in areas with complex topography or with sub-grid surface heterogeneities. Here we test a simple method to introduce realistic fine-scale precipitation patterns into the downscaled fields, with the objective of producing downscaled data more suitable for climatological and hydrological applications as well as for extreme event studies. The proposed method relies on the availability of a reference fine-scale precipitation climatology from which corrective weights for the downscaled fields are derived. We demonstrate the method by applying it to the Rainfall Filtered Autoregressive Model (RainFARM) stochastic rainfall downscaling algorithm. The modified RainFARM method is tested focusing on an area of complex topography encompassing the Swiss Alps, first, in a “perfect-model experiment” in which high-resolution (4 km) simulations performed with the Weather Research and Forecasting (WRF) regional model are aggregated to a coarser resolution (64 km) and then downscaled back to 4 km and compared with the original data. Second, the modified RainFARM is applied to the E-OBS gridded precipitation data (0.25∘ spatial resolution) over Switzerland, where high-quality gridded precipitation climatologies and accurate in situ observations are available for comparison with the downscaled data for the period 1981–2010. The results of the perfect-model experiment confirm a clear improvement in the description of the precipitation distribution when the RainFARM stochastic downscaling is applied, either with or without the implemented orographic adjustment. When we separately analyze grid points with precipitation climatology higher or lower than the median calculated over the neighboring grid points, we find that the probability density function (PDF) of the real precipitation is better reproduced using the modified RainFARM rather than the standard RainFARM method. In fact, the modified method successfully assigns more precipitation to areas where precipitation is on average more abundant according to a reference long-term climatology. The results of the E-OBS downscaling show that the modified RainFARM introduces improvements in the representation of precipitation amplitudes. While for low-precipitation areas the downscaled and the observed PDFs are in good agreement, for high-precipitation areas residual differences persist, mainly related to known E-OBS deficiencies in properly representing the correct range of precipitation values in the Alpine region. The downscaling method discussed is not intended to correct the bias which may be present in the coarse-scale data, so possible biases should be adjusted before applying the downscaling procedure.

Funder

European Commission

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3