Climate Services Toolbox (CSTools) v4.0: from climate forecasts to climate forecast information
-
Published:2022-08-04
Issue:15
Volume:15
Page:6115-6142
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Pérez-Zanón NúriaORCID, Caron Louis-PhilippeORCID, Terzago SilviaORCID, Van Schaeybroeck BertORCID, Lledó LlorençORCID, Manubens Nicolau, Roulin Emmanuel, Alvarez-Castro M. CarmenORCID, Batté LaurianeORCID, Bretonnière Pierre-AntoineORCID, Corti SusanaORCID, Delgado-Torres CarlosORCID, Domínguez MartaORCID, Fabiano FedericoORCID, Giuntoli Ignazio, von Hardenberg JostORCID, Sánchez-García EroteidaORCID, Torralba Verónica, Verfaillie DeborahORCID
Abstract
Abstract. Despite the wealth of existing climate forecast data, only a small part is effectively exploited for sectoral applications. A major cause of this is the lack of integrated tools that allow the translation of data into useful and skillful climate information. This barrier is addressed through the development of an R package. Climate Services Toolbox (CSTools) is an easy-to-use toolbox designed and built to assess and improve the quality of climate forecasts for seasonal to multi-annual scales. The package contains process-based, state-of-the-art methods for forecast calibration, bias correction, statistical and stochastic downscaling, optimal forecast combination, and multivariate verification, as well as basic and advanced tools to obtain tailored products. Due to the modular design of the toolbox in individual functions, the users can develop their own post-processing chain of functions, as shown in the use cases presented in this paper, including the analysis of an extreme wind speed event, the generation of seasonal forecasts of snow depth based on the SNOWPACK model, and the post-processing of temperature and precipitation data to be used as input in impact models.
Funder
Horizon 2020 Ministerio de Ciencia e Innovación
Publisher
Copernicus GmbH
Reference92 articles.
1. AEMET: Informe Mensual Climatológico Marzo de 2018,
http://www.aemet.es/documentos/es/serviciosclimaticos/vigilancia_clima/resumenes_climat/mensuales/2018/res_mens_clim_2018_03.pdf (last access:
25 October 2021), 2018. 2. Balling, R. C.: Classification in Climatology, in: Spatial Statistics and Models, edited by: Gaile, G. L. and Willmott, C. J., Theory and Decision Library, vol. 40, Springer, Dordrecht, https://doi.org/10.1007/978-94-017-3048-8_5, 1984. 3. Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss
avalanche warning Part I: Numerical model, Cold Reg. Sci. Technol., 35,
123–145, https://doi.org/10.1016/S0165-232X(02)00074-5, 2002. 4. Boer, G. J., Smith, D. M., Cassou, C., Doblas-Reyes, F., Danabasoglu, G., Kirtman, B., Kushnir, Y., Kimoto, M., Meehl, G. A., Msadek, R., Mueller, W. A., Taylor, K. E., Zwiers, F., Rixen, M., Ruprich-Robert, Y., and Eade, R.: The Decadal Climate Prediction Project (DCPP) contribution to CMIP6, Geosci. Model Dev., 9, 3751–3777, https://doi.org/10.5194/gmd-9-3751-2016, 2016. 5. Brady, R. X. and Spring, A.: climpred: Verification of weather and climate
forecasts, J. Open Source Softw., 6, 2781, https://doi.org/10.21105/JOSS.02781,
2021.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|