Sea ice and the ocean mixed layer over the Antarctic shelf seas
Author:
Petty A. A.,Holland P. R.,Feltham D. L.
Abstract
Abstract. An ocean mixed layer model has been incorporated into the Los Alamos sea ice model CICE to investigate regional variations in the surface-driven formation of Antarctic shelf waters. This model captures well the expected sea ice thickness distribution, and produces deep (> 500 m) mixed layers in the Weddell and Ross shelf seas each winter. This results in the complete destratification of the water column in deep southern coastal regions (leading to HSSW formation) and also in some shallower regions (no HSSW formation) of these seas. Shallower mixed layers are produced in the Amundsen and Bellingshausen seas. By deconstructing the surface power input to the mixed layer, we show that the freshwater flux from sea ice growth/melt dominates the evolution of the mixed layer in all seas, with a smaller contribution from the surface heat flux. The Weddell and Ross shelf seas receive an annual surplus of energy at the surface, the Amundsen shelf sea energy input in autumn/winter is balanced by energy extraction in spring/summer, and the Bellingshausen shelf sea experiences an annual surface energy deficit, through both a low energy input in autumn/winter and the highest energy loss in spring/summer. An analysis of the sea ice mass balance demonstrates the contrasting mean ice growth, melt and export in each region. The Weddell and Ross shelf seas have the highest annual ice growth, with a large fraction exported northwards each year, whereas the Bellingshausen shelf sea experiences the highest annual ice melt, driven by the advection of ice from the northeast. A linear regression analysis is performed to determine the temporal and spatial correlations between the autumn/winter mixed layer power input and several atmospheric variables. The temporal mean Weddell and Ross autumn/winter power input shows stronger spatial correlation to several atmospheric variables compared to the Amundsen and Bellingshausen. In contrast the spatial mean autumn/winter power input shows stronger temporal correlation to several atmospheric variables, in the Amundsen and Bellingshausen. All regions show strong temporal correlation between the autumn/winter surface power input and the meridional wind speed except the Ross, which instead shows moderate correlation to the zonal wind speed. Further regressions demonstrate that this is probably due to the Ross shelf-sea geometry and impact of the ocean turning angle on ice motion, with a more zonal (eastward) wind preventing ice build up along the Cape Adare coast in the eastern Ross shelf sea, increasing ice export.
Publisher
Copernicus GmbH
Reference76 articles.
1. Antonov, J. I., Seidov, D., Boyer, T. P., Locarnini, R. A., Mishonov, A. V., Garcia, H. E., Baranova, O. K., Zweng, M. M., and Johnson, D. R.: World Ocean Atlas 2009, vol. 2: Salinity, edited by: Levitus, S.,. NOAA Atlas NESDIS, 69, 184 pp., 2010. 2. Arneborg, L., Wahlin, A. K., Bjork, G., Liljebladh, B., and Orsi, A. H.: Persistent inflow of warm water onto the central Amundsen shelf, Nat. Geosci., 5, 876–880, https://doi.org/10.1038/ngeo1644, 2012. 3. Årthun, M., Nicholls, K. W., and Boehme, L.: Wintertime water mass modification near an Antarctic ice front, J. Phys. Oceanogr., 43, 359–365, https://doi.org/10.1175/JPO-D-12-0186.1, 2012. 4. Assmann, K. and Timmermann, R.: Variability of dense water formation in the Ross Sea, Ocean Dynam., 55, 68–87, https://doi.org/10.1007/s10236-004-0106-7, 2005. 5. Assmann, K. M., Hellmer, H. H., and Jacobs, S. S.: Amundsen Sea ice production and transport, J. Geophys. Res., 110, C12013, https://doi.org/10.1029/2004JC002797, 2005.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|