Fixed-Point Observation of Mixed Layer Evolution in the Seasonally Ice-Free Chukchi Sea: Turbulent Mixing due to Gale Winds and Internal Gravity Waves

Author:

Kawaguchi Yusuke1,Nishino Shigeto2,Inoue Jun3

Affiliation:

1. Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan, and Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington

2. Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan

3. National Institute of Polar Research, Tokyo, and Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan

Abstract

AbstractA fixed-point observation using the R/V Mirai was conducted in the ice-free northern Chukchi Sea of the Arctic Ocean during September of 2013. During the program the authors performed repeated microstructure measurements to reveal the temporal evolution of the surface mixed layer and mixing processes in the upper water column. The shelf region was initially characterized by a distinct two-layer system comprising a warmer/fresher top layer and a colder/saltier bottom layer. During the two-week observation period, the top-layer water showed two types of mixing processes: near-surface turbulence due to strong wind forcing and subsurface mixing due to internal gravity waves. In the first week, when the top layer was stratified with fresh sea ice meltwater, turbulent energy related to internal waves propagated through the subsurface stratification, resulting in a mechanical overturning near the pycnocline, followed by enhanced mixing there. In the second week, gale winds directly stirred up the upper water and then established a deeper homogenous layer. The combination of internal wave mixing and wind-driven turbulence may contribute to releasing the oceanic heat into the atmosphere, consequently promoting the preconditioning of surface water freezing.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3