Modeling the evolution of the structural anisotropy of snow
-
Published:2020-01-14
Issue:1
Volume:14
Page:51-75
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Leinss SilvanORCID, Löwe Henning, Proksch Martin, Kontu AnnaORCID
Abstract
Abstract. The structural anisotropy of snow characterizes the spatially anisotropic distribution of the ice and air microstructure and is a key parameter for improving parameterizations of physical properties. To enable the use of the anisotropy in snowpack models as an internal variable, we propose a simple model based on a rate equation for the temporal evolution. The model is validated with a comprehensive set of anisotropy profiles and time series from X-ray microtomography (CT) and radar measurements. The model includes two effects, namely temperature gradient metamorphism and settling, and can be forced by any snowpack model that predicts temperature and density. First, we use CT time series from lab experiments to validate the proposed effect of temperature gradient metamorphism. Next, we use SNOWPACK simulations to calibrate the model with radar time series from the NoSREx campaigns in Sodankylä, Finland. Finally we compare the simulated anisotropy profiles against field-measured full-depth CT profiles. Our results confirm that the creation of vertical structures is mainly controlled by the vertical water vapor flux through the snow volume. Our results further indicate a yet undocumented effect of snow settling on the creation of horizontal structures. Overall the model is able to reproduce the characteristic anisotropy variations in radar time series of four different winter seasons with a very limited set of calibration parameters.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference63 articles.
1. Alley, R. B.: Texture of polar firn for remote sensing, Ann. Glaciol., 9,
1–4, https://doi.org/10.3189/S0260305500200670, 1987. a, b 2. Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss
avalanche warning: Part I: numerical model, Cold Reg. Sci. Technol., 35,
123–145, https://doi.org/10.1016/S0165-232X(02)00074-5, 2002. a, b, c 3. Brun, E., Martin, E., Simon, V., Gendre, C., and Coleou, C.: An energy and mass
model of snow cover suitable for operational avalanche forecasting, J.
Glaciol., 35, 333–342, https://doi.org/10.3189/S0022143000009254, 1989. a 4. Brun, E., David, P., Sudul, M., and Brunot, G.: A numerical model to simulate
snow-cover stratigraphy for operational avalanche forecasting, J. Glaciol.,
38, 13–22, https://doi.org/10.3189/S0022143000009552, 1992. a, b 5. Calonne, N., Flin, F., Morin, S., Lesaffre, B., du Rolland du Roscoat, S., and
Geindreau, C.: Numerical and experimental investigations of the effective
thermal conductivity of snow, Geophys. Res. Lett., 38, 1–6,
https://doi.org/10.1029/2011GL049234, 2011. a
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|