Evaluating bovine sperm transfection using a high-performance polymer reagent and assessing the fertilizing capacity of transfected spermatozoa using an in vitro fertilization technique
-
Published:2018-09-03
Issue:3
Volume:61
Page:351-358
-
ISSN:2363-9822
-
Container-title:Archives Animal Breeding
-
language:en
-
Short-container-title:Arch. Anim. Breed.
Author:
Jafarnejad Ali,Zandi Mohammad,Aminafshar Mehdi,Sanjabi Mohammad Reza,Emamjomeh Kashan Naser
Abstract
Abstract. Sperm-mediated gene transfer (SMGT) has been considered as an innovative
device for transgenesis on a mass scale by taking advantage of live
spermatozoa to transfer exogenous DNA. However, the fertilizing ability of
transfected sperm cells and the poor reproducibility of this method are still
matters of controversy. Hence, the current study was conducted to evaluate
transfecting the enhanced green fluorescent protein (EGFP) as the source of
exogenous DNA into bovine spermatozoa using a high-performance polymer
reagent as well as assessing the fertilizing capacity of transfected sperm
cells by in vitro fertilization (IVF). In the first experiment, three
different concentrations of rhodamine-labeled DNA and high-performance
polymer transfection reagent, X-tremeGENE HP, were used to transfect bovine
spermatozoa. In the second experiment, IVF and fluorescence microscopy
methods were utilized to assess the fertilizing capacity of sperm cells
carrying exogenous DNA when X-tremeGENE HP was used either alone or with
dimethyl sulfoxide (DMSO) treatment. Findings revealed that at 1 µL
X-tremeGENE HP and 1 µg of DNA concentration, approximately
one-third of total spermatozoa were transfected. However, following IVF and
fluorescence microscopy, no EGFP expression was detected in zygotes and
morula-stage embryos. Results of this study showed that, although X-tremeGENE
HP could transfer EGFP to bovine spermatozoa, transfected sperm cells were
unable to transfer foreign DNA to matured bovine oocytes. Under our
experimental conditions, we hypothesized that the absence of the EGFP
fluorescence signal in embryos could be due to the detrimental effects of
transfection treatments on sperm cells' fertility performance as well as
incompetency of IVF to produce transgenic embryos using transfected sperm
cells.
Publisher
Copernicus GmbH
Reference50 articles.
1. Alderson, J., Wilson, B., Laible, G., Pfeffer, P., and L'Huillier, P.: Protamine sulfate protects exogenous DNA against nuclease degradation but is unable to improve the efficiency of bovine sperm mediated transgenesis, Anim. Reprod. Sci., 91, 23–30, 2006. 2. Al-Shuhaib, M., Al-Saadi, A., Ewadh, M., and Noor, M.: Sperm Mediated Gene Transfer in Mammals, a Versatile Platform with Multiple Enhancements Techniques, J. Biol. Agric. Healthcare, 4, 58–68, 2014. 3. Anzar, M. and Buhr, M. M.: Spontaneous uptake of exogenous DNA by bull spermatozoa, Theriogenology, 65, 683–690, 2006. 4. Bachiller, D., Schellander, K., Peli, J., and Ruther, U.: Liposome-mediated DNA uptake by sperm cells, Mol. Reprod. Dev., 30, 194–200, 1991. 5. Brackett, B. G., Baranska, W., Sawichi, W., and Koprowski, H.: Uptake of heterologous genome by mammalian spermatozoa and its transfer to ova through fertilization, P. Natl. Acad. Sci. USA, 68, 353–357, 1971.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|