Variational assimilation of streamflow into operational distributed hydrologic models: effect of spatiotemporal scale of adjustment

Author:

Lee H.,Seo D.-J.,Liu Y.,Koren V.,McKee P.,Corby R.

Abstract

Abstract. State updating of distributed rainfall-runoff models via streamflow assimilation is subject to overfitting because large dimensionality of the state space of the model may render the assimilation problem seriously under-determined. To examine the issue in the context of operational hydrologic forecasting, we carried out a set of real-world experiments in which streamflow data is assimilated into the gridded Sacramento Soil Moisture Accounting (SAC-SMA) and kinematic-wave routing models of the US National Weather Service (NWS) Research Distributed Hydrologic Model (RDHM) via variational data assimilation (DA). The nine study basins include four in Oklahoma and five in Texas. To assess the sensitivity of the performance of DA to the dimensionality of the control vector, we used nine different spatiotemporal adjustment scales, with which the state variables are adjusted in a lumped, semi-distributed, or distributed fashion and biases in precipitation and PE are adjusted at hourly or 6-hourly scale, or at the scale of the fast response of the basin. For each adjustment scale, three different assimilation scenarios were carried out in which streamflow observations are assumed to be available at basin interior points only, at the basin outlet only, or at all locations. The results for the nine basins show that the optimum spatiotemporal adjustment scale varies from basin to basin and between streamflow analysis and prediction for all three streamflow assimilation scenarios. The most preferred adjustment scale for seven out of the nine basins is found to be distributed and hourly. It was found that basins with highly correlated flows between interior and outlet locations tend to be less sensitive to the adjustment scale and could benefit more from streamflow assimilation. In comparison with outlet flow assimilation, interior flow assimilation produced streamflow predictions whose spatial correlation structure is more consistent with that of observed flow for all adjustment scales. We also describe diagnosing the complexity of the assimilation problem using spatial correlation of streamflow and discuss the effect of timing errors in hydrograph simulation on the performance of the DA procedure.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3