Robust multi-objective calibration strategies – possibilities for improving flood forecasting

Author:

Krauße T.,Cullmann J.,Saile P.,Schmitz G. H.

Abstract

Abstract. Process-oriented rainfall-runoff models are designed to approximate the complex hydrologic processes within a specific catchment and in particular to simulate the discharge at the catchment outlet. Most of these models exhibit a high degree of complexity and require the determination of various parameters by calibration. Recently, automatic calibration methods became popular in order to identify parameter vectors with high corresponding model performance. The model performance is often assessed by a purpose-oriented objective function. Practical experience suggests that in many situations one single objective function cannot adequately describe the model's ability to represent any aspect of the catchment's behaviour. This is regardless of whether the objective is aggregated of several criteria that measure different (possibly opposite) aspects of the system behaviour. One strategy to circumvent this problem is to define multiple objective functions and to apply a multi-objective optimisation algorithm to identify the set of Pareto optimal or non-dominated solutions. Nonetheless, there is a major disadvantage of automatic calibration procedures that understand the problem of model calibration just as the solution of an optimisation problem: due to the complex-shaped response surface, the estimated solution of the optimisation problem can result in different near-optimum parameter vectors that can lead to a very different performance on the validation data. Bárdossy and Singh (2008) studied this problem for single-objective calibration problems using the example of hydrological models and proposed a geometrical sampling approach called Robust Parameter Estimation (ROPE). This approach applies the concept of data depth in order to overcome the shortcomings of automatic calibration procedures and find a set of robust parameter vectors. Recent studies confirmed the effectivity of this method. However, all ROPE approaches published so far just identify robust model parameter vectors with respect to one single objective. The consideration of multiple objectives is just possible by aggregation. In this paper, we present an approach that combines the principles of multi-objective optimisation and depth-based sampling, entitled Multi-Objective Robust Parameter Estimation (MOROPE). It applies a multi-objective optimisation algorithm in order to identify non-dominated robust model parameter vectors. Subsequently, it samples parameter vectors with high data depth using a further developed sampling algorithm presented in Krauße and Cullmann (2012a). We study the effectivity of the proposed method using synthetical test functions and for the calibration of a distributed hydrologic model with focus on flood events in a small, pre-alpine, and fast responding catchment in Switzerland.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference65 articles.

1. Beven, K.: Changing ideas in hydrolog – the case of physically-based models, J. Hydrol., 105, 157–172, 1989.

2. Boyle, D., Lamorey, G., Bassett, S., Pohll, G., Krause, P., and Kralisch, S.: Investigating the value of hydrologic model complexity and spatial information using multicriteria methods, in: 7th International Conference on Hydroinformatics, Nice, France, 2006.

3. Brakensiek, D., Rawls, W., and Stephenson, G.: Modifying SCS hydrological soil groups and curve numbers for rangeland soils, ASAE Paper, 203, 1984.

4. Bremner, D., Chen, D., Iacono, J., Langerman, S., and Morin, P.: Output-sensitive algorithms for Tukey depth and related problems, Stat. Comput., 18, 259–266, 2008.

5. Bárdossy, A.: Calibration of hydrological model parameters for ungauged catchments, Hydrol. Earth Syst. Sci., 11, 703–710, https://doi.org/10.5194/hess-11-703-2007, 2007.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3