Evaluation of Snowmelt Estimation Techniques for Enhanced Spring Peak Flow Prediction

Author:

Agnihotri Jetal,Coulibaly Paulin

Abstract

Water resources management and planning requires accurate and reliable spring flood forecasts. In cold and snowy countries, particularly in snow-dominated watersheds, enhanced flood prediction requires adequate snowmelt estimation techniques. Whereas the majority of the studies on snow modeling have focused on comparing the performance of empirical techniques and physically based methods, very few studies have investigated empirical models and conceptual models for improving spring peak flow prediction. The objective of this study is to investigate the potential of empirical degree-day method (DDM) to effectively and accurately predict peak flows compared to sophisticated and conceptual SNOW-17 model at two watersheds in Canada: the La-Grande River Basin (LGRB) and the Upper Assiniboine river at Shellmouth Reservoir (UASR). Additional insightful contributions include the evaluation of a seasonal model calibration approach, an annual model calibration method, and two hydrological models: McMaster University Hydrologiska Byrans Vattenbalansavdelning (MAC-HBV) and Sacramento Soil Moisture Accounting model (SAC-SMA). A total of eight model scenarios were considered for each watershed. Results indicate that DDM was very competitive with SNOW-17 at both the study sites, whereas it showed significant improvement in prediction accuracy at UASR. Moreover, the seasonally calibrated model appears to be an effective alternative to an annual model calibration approach, while the SAC-SMA model outperformed the MAC-HBV model, no matter which snowmelt computation method, calibration approach, or study basin is used. Conclusively, the DDM and seasonal model calibration approach coupled with the SAC-SMA hydrologic model appears to be a robust model combination for spring peak flow estimation.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3