Evaluation of the OMPS/LP stratospheric aerosol extinction product using SAGE III/ISS observations
-
Published:2020-06-30
Issue:6
Volume:13
Page:3471-3485
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Chen Zhong, Bhartia Pawan K., Torres Omar, Jaross Glen, Loughman Robert, DeLand Matthew, Colarco PeterORCID, Damadeo RobertORCID, Taha GhassanORCID
Abstract
Abstract. The Ozone Mapping and Profiler Suite Limb Profiler (OMPS/LP) has been taking
limb-scattered measurements since April 2012. It is designed to
produce ozone and aerosol vertical profiles at a 1.6 km vertical resolution
over the entire sunlit globe. The Version 1.5 (V1.5) aerosol extinction
retrieval algorithm provides aerosol extinction profiles using observed
radiances at 675 nm. The algorithm assumes Mie theory and a gamma function
aerosol size distribution for the stratospheric aerosol that is derived from results calculated by the Community Aerosol and Radiation Model for Atmospheres (CARMA). In this paper, we compare V1.5 LP aerosol profiles with SAGE
III/ISS solar occultation observations for the period from June 2017 to May 2019,
when both measurements were available to evaluate our ability to
characterize background aerosol conditions. Overall, LP extinction profiles
agree with SAGE III/ISS data to within ±25 % for altitudes between
19 and 27 km, even during periods perturbed by volcanic eruptions or intense
forest fires. In this altitude range, the slope parameter of linear fitting
of LP extinction values with respect to SAGE III/ISS measurements is close
to 1.0, with Pearson correlation coefficients of r≥0.95, indicating
that the LP aerosol data are reliable in that altitude range. Comparisons of
extinction time series show that both instruments capture the variability of
the stratospheric aerosol layer quite well, and the differences between the
two instruments vary from 0 % to ±25 % depending on altitude,
latitude, and time. In contrast, we find erroneous seasonal variations
in the OMPS/LP Version 1.5 dataset, which usually exist below 20 km in the
Southern Hemisphere due to the lack of sensitivity to particles when the
scattering angle (SA) is greater than 145∘. We also find that LP-retrieved extinction is systematically higher than SAGE III/ISS observations
at altitudes above 28 km and systematically lower below 19 km in the tropics
with significant biases up to ±13 %. This is likely due in part to
the fact that the actual aerosol size distribution is altitude dependent.
There are also other reasons related to cloud contamination, wavelength
limitations, aerosol loading, and the influence of the viewing configuration.
Funder
NASA Astrobiology Institute
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference46 articles.
1. Bhartia, P. K. and Torres, O. O.: OMPS-NPP L2 LP Aerosol Extinction Vertical Profile swath daily 3slit V1.5, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), https://doi.org/10.5067/GZJJYA7L0YW2, 2019. 2. Bingen, C., Robert, C. E., Stebel, K., Brühl, C., Schallock, J.,
Vanhellemont, F., Mateshvili, N., Höpfner, M., Trickl, T., Barnes, J.
E., Jumelet, J., Vernier, J.-P., Popp, T., de Leeuw, G., and Pinnock, S.:
Stratospheric aerosol data records for the climate change initiative:
Development, validation and application to chemistry-climate modelling,
Remote Sens. Environ., 203, 296–321,
https://doi.org/10.1016/j.rse.2017.06.002, 2017. 3. Bourassa, A. E., Degenstein, D. A., Gattinger, R. L., and Llewellyn, E. J.:
Stratospheric aerosol retrieval with optical spectrograph and infrared
imaging system limb scatter measurements, J. Geophys. Res., 112, D10217,
https://doi.org/10.1029/2006JD008079, 2007. 4. Bourassa, A. E., Rieger, L. A., Lloyd, N. D., and Degenstein, D. A.: Odin-OSIRIS stratospheric aerosol data product and SAGE III intercomparison, Atmos. Chem. Phys., 12, 605–614, https://doi.org/10.5194/acp-12-605-2012, 2012. 5. Brühl, C., Schallock, J., Klingmüller, K., Robert, C., Bingen, C., Clarisse, L., Heckel, A., North, P., and Rieger, L.: Stratospheric aerosol radiative forcing simulated by the chemistry climate model EMAC using Aerosol CCI satellite data, Atmos. Chem. Phys., 18, 12845–12857, https://doi.org/10.5194/acp-18-12845-2018, 2018.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|