Five-satellite-sensor study of the rapid decline of wildfire smoke in the stratosphere
-
Published:2022-03-28
Issue:6
Volume:22
Page:3967-3984
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Martinsson Bengt G.ORCID, Friberg JohanORCID, Sandvik Oscar S.ORCID, Sporre Moa K.ORCID
Abstract
Abstract. Smoke from western North American wildfires reached the stratosphere in
large amounts in August 2017. Limb-oriented satellite-based sensors are
commonly used for studies of wildfire aerosol injected into the stratosphere
(OMPS-LP (Ozone Mapping and Profiler Suite Limb Profiler) and SAGE III/ISS
(Stratospheric Aerosol and Gas Experiment III on the International Space
Station)). We find that these methods are inadequate for studies of the first 1–2 months after such a strong fire event due to event termination
(“saturation”). The nadir-viewing lidar CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) is less affected due to shorter path in the smoke; furthermore, it provides a means to develop a method to
correct for strong attenuation of the signal. After the initial phase, the
aerosol optical depth (AOD) from OMPS-LP and CALIOP show very good agreement
above the 380 K isentrope, whereas OMPS-LP tends to produce higher AOD
than CALIOP in the lowermost stratosphere (LMS), probably due to reduced
sensitivity at altitudes below 17 km. Time series from CALIOP of
attenuation-corrected stratospheric AOD of wildfire smoke show an
exponential decline during the first month after the fire, which coincides
with highly significant changes in the wildfire aerosol optical properties.
The AOD decline is verified by the evolution of the smoke layer composition,
comparing the aerosol scattering ratio (CALIOP) to the water vapor
concentration from MLS (Microwave Limb Sounder). Initially the stratospheric
wildfire smoke AOD is comparable with the most important volcanic eruptions
during the last 25 years. Wildfire aerosol declines much faster, 80 %–90 % of the AOD is removed with a half-life of approximately 10 d. We
hypothesize that this dramatic decline is caused by photolytic loss. This
process is rarely observed in the atmosphere. However, in the stratosphere
this process can be studied with practically no influence from wet
deposition, in contrast to the troposphere where this is the main removal
path of submicron aerosol particles. Despite the loss, the aerosol
particles from wildfire smoke in the stratosphere are relevant for the
climate.
Funder
Svenska Forskningsrådet Formas
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference77 articles.
1. Ammann, C. M., Meehl, G. A., Washington, W. M., and Zender, C. S.: A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate, Geophys. Res. Lett., 30, 1567–1661, https://doi.org/10.1029/2003GL016875, 2003. 2. Andersson, S. M., Martinsson, B. G., Friberg, J., Brenninkmeijer, C. A. M., Rauthe-Schöch, A., Hermann, M., van Velthoven, P. F. J., and Zahn, A.: Composition and evolution of volcanic aerosol from eruptions of Kasatochi, Sarychev and Eyjafjallajökull in 2008–2010 based on CARIBIC observations, Atmos. Chem. Phys., 13, 1781–1796, https://doi.org/10.5194/acp-13-1781-2013, 2013. 3. Andersson, S. M., Martinsson, B. G., Vernier, J. P., Friberg, J., Brenninkmeijer, C. A. M., Hermann, M., Van Velthoven, P. F. J., and Zahn, A.: Significant radiative impact of volcanic aerosol in the lowermost stratosphere, Nat. Commun., 6, 7692, https://doi.org/10.1038/ncomms8692, 2015. 4. Ansmann, A., Baars, H., Chudnovsky, A., Mattis, I., Veselovskii, I., Haarig, M., Seifert, P., Engelmann, R., and Wandinger, U.: Extreme levels of Canadian wildfire smoke in the stratosphere over central Europe on 21–22 August 2017, Atmos. Chem. Phys., 18, 11831–11845, https://doi.org/10.5194/acp-18-11831-2018, 2018. 5. Baars, H., Ansmann, A., Ohneiser, K., Haarig, M., Engelmann, R., Althausen, D., Hanssen, I., Gausa, M., Pietruczuk, A., Szkop, A., Stachlewska, I. S., Wang, D., Reichardt, J., Skupin, A., Mattis, I., Trickl, T., Vogelmann, H., Navas-Guzmán, F., Haefele, A., Acheson, K., Ruth, A. A., Tatarov, B., Müller, D., Hu, Q., Podvin, T., Goloub, P., Veselovskii, I., Pietras, C., Haeffelin, M., Fréville, P., Sicard, M., Comerón, A., Fernández García, A. J., Molero Menéndez, F., Córdoba-Jabonero, C., Guerrero-Rascado, J. L., Alados-Arboledas, L., Bortoli, D., Costa, M. J., Dionisi, D., Liberti, G. L., Wang, X., Sannino, A., Papagiannopoulos, N., Boselli, A., Mona, L., D'Amico, G., Romano, S., Perrone, M. R., Belegante, L., Nicolae, D., Grigorov, I., Gialitaki, A., Amiridis, V., Soupiona, O., Papayannis, A., Mamouri, R.-E., Nisantzi, A., Heese, B., Hofer, J., Schechner, Y. Y., Wandinger, U., and Pappalardo, G.: The unprecedented 2017–2018 stratospheric smoke event: decay phase and aerosol properties observed with the EARLINET, Atmos. Chem. Phys., 19, 15183–15198, https://doi.org/10.5194/acp-19-15183-2019, 2019.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|