Robust global detection of forced changes in mean and extreme precipitation despite observational disagreement on the magnitude of change

Author:

de Vries Iris Elisabeth,Sippel Sebastian,Pendergrass Angeline GreeneORCID,Knutti RetoORCID

Abstract

Abstract. Detection and attribution (D&A) of forced precipitation change are challenging due to internal variability, limited spatial, and temporal coverage of observational records and model uncertainty. These factors result in a low signal-to-noise ratio of potential regional and even global trends. Here, we use a statistical method – ridge regression – to create physically interpretable fingerprints for the detection of forced changes in mean and extreme precipitation with a high signal-to-noise ratio. The fingerprints are constructed using Coupled Model Intercomparison Project phase 6 (CMIP6) multi-model output masked to match coverage of three gridded precipitation observational datasets – GHCNDEX, HadEX3, and GPCC – and are then applied to these observational datasets to assess the degree of forced change detectable in the real-world climate in the period 1951–2020. We show that the signature of forced change is detected in all three observational datasets for global metrics of mean and extreme precipitation. Forced changes are still detectable from changes in the spatial patterns of precipitation even if the global mean trend is removed from the data. This shows the detection of forced change in mean and extreme precipitation beyond a global mean trend is robust and increases confidence in the detection method's power as well as in climate models' ability to capture the relevant processes that contribute to large-scale patterns of change. We also find, however, that detectability depends on the observational dataset used. Not only coverage differences but also observational uncertainty contribute to dataset disagreement, exemplified by the times of emergence of forced change from internal variability ranging from 1998 to 2004 among datasets. Furthermore, different choices for the period over which the forced trend is computed result in different levels of agreement between observations and model projections. These sensitivities may explain apparent contradictions in recent studies on whether models under- or overestimate the observed forced increase in mean and extreme precipitation. Lastly, the detection fingerprints are found to rely primarily on the signal in the extratropical Northern Hemisphere, which is at least partly due to observational coverage but potentially also due to the presence of a more robust signal in the Northern Hemisphere in general.

Funder

Horizon 2020

National Science Foundation

National Center for Atmospheric Research

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3