Carbon Monitoring Satellite (CarbonSat): assessment of atmospheric CO<sub>2</sub> and CH<sub>4</sub> retrieval errors by error parameterization

Author:

Buchwitz M.ORCID,Reuter M.ORCID,Bovensmann H.,Pillai D.ORCID,Heymann J.,Schneising O.,Rozanov V.,Krings T.,Burrows J. P.ORCID,Boesch H.,Gerbig C.ORCID,Meijer Y.,Löscher A.ORCID

Abstract

Abstract. Carbon Monitoring Satellite (CarbonSat) is one of two candidate missions for ESA's Earth Explorer 8 (EE8) satellite to be launched around the end of this decade. The overarching objective of the CarbonSat mission is to improve our understanding of natural and anthropogenic sources and sinks of the two most important anthropogenic greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4). The unique feature of CarbonSat is its "GHG imaging capability", which is achieved via a combination of high spatial resolution (2 km × 2 km) and good spatial coverage (wide swath and gap-free across- and along-track ground sampling). This capability enables global imaging of localized strong emission source, such as cities, power plants, methane seeps, landfills and volcanos, and likely enables better disentangling of natural and anthropogenic GHG sources and sinks. Source–sink information can be derived from the retrieved atmospheric column-averaged mole fractions of CO2 and CH4, i.e. XCO2 and XCH4, by inverse modelling. Using the most recent instrument and mission specification, an error analysis has been performed using the Bremen optimal EStimation DOAS (BESD/C) retrieval algorithm. We assess the retrieval performance for atmospheres containing aerosols and thin cirrus clouds, assuming that the retrieval forward model is able to describe adequately all relevant scattering properties of the atmosphere. To compute the errors for each single CarbonSat observation in a one-year period, we have developed an error parameterization scheme comprising six relevant input parameters: solar zenith angle, surface albedo in two bands, aerosol and cirrus optical depth, and cirrus altitude variations. Other errors, e.g. errors resulting from aerosol type variations, are partially quantified but not yet accounted for in the error parameterization. Using this approach, we have generated and analysed one year of simulated CarbonSat observations. Using this data set we estimate that systematic errors are for the overwhelming majority of cases (≈ 85%) below 0.3 ppm for XCO2 (below 0.5 ppm for 99.5%) and below 2 ppb for XCH4 (below 4 ppb for 99.3%). We also show that the single-measurement precision is typically around 1.2 ppm for XCO2 and 7 ppb for XCH4 (1σ). The number of quality-filtered observations over cloud- and ice-free land surfaces is in the range of 33 to 47 million per month depending on season. Recently it has been shown that terrestrial vegetation chlorophyll fluorescence (VCF) emission needs to be considered for accurate XCO2 retrieval. We therefore retrieve VCF from clear Fraunhofer lines located around 755 nm and show that CarbonSat will provide valuable information on VCF. We estimate that the VCF single-measurement precision is approximately 0.3 mW m−2 nm−1 sr−1 (1σ).

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference74 articles.

1. Basu, S., Guerlet, S., Butz, A., Houweling, S., Hasekamp, O., Aben, I., Krummel, P., Steele, P., Langenfelds, R., Torn, M., Biraud, S., Stephens, B., Andrews, A., and Worthy, D.: Global CO2 fluxes estimated from GOSAT retrievals of total column CO2, Atmos. Chem. Phys., 13, 8695–8717, https://doi.org/10.5194/acp-13-8695-2013, 2013.

2. Bergamaschi, P., Frankenberg, C., Meirink, J. F., Krol, M., Villani, M. G., Houweling, S., Dentener, F., Dlugokencky, E. J., Miller, J. B., Gatti, L. V. Engel, A., and Levin, I.: Inverse modeling of global and regional CH4 emissions using SCIAMACHY satellite retrievals, J. Geophys. Res., 114, D22301, https://doi.org/10.1029/2009JD012287, 2009.

3. Bergamaschi, P., Houweling, H., Segers, A., Krol, M., Frankenberg, C., Scheepmaker, R. A., Dlugokencky, E., Wofsy, S. C., Kort, E. A., Sweeney, C., Schuck, T., Brenninkmeijer, C., Chen, H., Beck, V., and Gerbig, C.: Atmospheric CH4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements, J. Geophys. Res., 118, 7350–7369, https://doi.org/10.1002/jgrd.50480, 2013.

4. Boesch, H., Baker, D., Connor, B., Crisp, D., and Miller, C.: Global characterization of CO2 column retrievals from shortwave-infrared satellite observations of the orbiting carbon observatory-2 mission, Remote Sens., 3, 270–304, https://doi.org/10.3390/rs3020270, 2011.

5. Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V. V., Chance, K. V., and Goede, A.: SCIAMACHY – mission objectives and measurement modes, J. Atmos. Sci., 56, 127–150, 1999.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3