Deciphering the spatio-temporal complexity of climate change of the last deglaciation: a model analysis
Author:
Roche D. M.,Renssen H.,Paillard D.
Abstract
Abstract. Understanding the sequence of events occuring during the last major glacial to interglacial transition (21 ka BP to 9 ka BP) is a challenging task that has the potential to unveil the mechanisms behind large scale climate changes. Though many studies have focused at a complex understanding of the sequence of rapid climatic change that accompanied or interrupted the deglaciation, few have analysed it in a more theoretical framework with simple forcings. In the following, we address when and where the first significant temperature anomalies appear when using slow varying forcing of the last deglaciation. We use here coupled transient simulations of the last deglaciation, including ocean, atmosphere and vegetation components to analyse the spatial timing of the deglaciation. To keep the analysis in a simple framework, we do not include rapid freshwater forcings that have led to rapid climate shifts during that time period. We aim to disentangle the direct and subsequent response of the climate system to slow forcing and moreover the location where those changes are more clearly expressed. In a data-modelling comparison perspective this could help understanding the physically plausible phasing between known forcings and recorded climatic changes. Our analysis of climate variability could also help to distinguish deglacial warming signals from internal climate variability. We thus are able to better pinpoint the onset of local deglaciation, as defined by the first significant local warming, and further show that there is a large regional variability associated with it, even with the set of slow forcings used here.
Publisher
Copernicus GmbH
Reference53 articles.
1. Archer, D. E., Martin, P. A., Milovich, J., Brovkin, V., Plattner, G.-K., and Ashendel, C.: Model sensitivity in the effect of Antarctic sea ice and stratification on atmospheric pCO2, Paleoceanography, 18, 1012, https://doi.org/10.1029/2002PA000760, 2003. 2. Berger, A. L.: Long-term variations of caloric insolation resulting from earths orbital elements, Quaternary Res., 9, 139–167, 1978. 3. Blunier, T. and Brook, E. J.: Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period, Science, 291, 109–112, 2001. 4. Blunier, T., Chappellaz, J., Schwander, J., Stauffer, B., and Raynaud, D.: Variations in atmospheric methane concentration during the Holocene epoch, Nature, 374, 46–49, 1995. 5. Blunier, T., Chappellaz, J., Schwander, J., Dällenbach, A., Stauffer, B., Stocker, T. F., Raynaud, D., Jouzel, J., Clausen, H. B., and Hammer, C. U.: Asynchrony of Antarctic and Greenland climate change during the last glacial period, Nature, 394, 739–743, 1998.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|