Detecting the human fingerprint in the summer 2022 western–central European soil drought
-
Published:2024-02-16
Issue:1
Volume:15
Page:131-154
-
ISSN:2190-4987
-
Container-title:Earth System Dynamics
-
language:en
-
Short-container-title:Earth Syst. Dynam.
Author:
Schumacher Dominik L.ORCID, Zachariah Mariam, Otto Friederike, Barnes ClairORCID, Philip Sjoukje, Kew SarahORCID, Vahlberg Maja, Singh Roop, Heinrich Dorothy, Arrighi JulieORCID, van Aalst Maarten, Hauser MathiasORCID, Hirschi MartinORCID, Bessenbacher VerenaORCID, Gudmundsson LukasORCID, Beaudoing Hiroko K.ORCID, Rodell MatthewORCID, Li SihanORCID, Yang WenchangORCID, Vecchi Gabriel A., Harrington Luke J., Lehner FlavioORCID, Balsamo GianpaoloORCID, Seneviratne Sonia I.ORCID
Abstract
Abstract. In the 2022 summer, western–central Europe and several other regions in the northern extratropics experienced substantial soil moisture deficits in the wake of precipitation shortages and elevated temperatures. Much of Europe has not witnessed a more severe soil drought since at least the mid-20th century, raising the question whether this is a manifestation of our warming climate. Here, we employ a well-established statistical approach to attribute the low 2022 summer soil moisture to human-induced climate change using observation-driven soil moisture estimates and climate models. We find that in western–central Europe, a June–August root zone soil moisture drought such as in 2022 is expected to occur once in 20 years in the present climate but would have occurred only about once per century during preindustrial times. The entire northern extratropics show an even stronger global warming imprint with a 20-fold soil drought probability increase or higher, but we note that the underlying uncertainty is large. Reasons are manifold but include the lack of direct soil moisture observations at the required spatiotemporal scales, the limitations of remotely sensed estimates, and the resulting need to simulate soil moisture with land surface models driven by meteorological data. Nevertheless, observation-based products indicate long-term declining summer soil moisture for both regions, and this tendency is likely fueled by regional warming, while no clear trends emerge for precipitation. Finally, our climate model analysis suggests that under 2 ∘C global warming, 2022-like soil drought conditions would become twice as likely for western–central Europe compared to today and would take place nearly every year across the northern extratropics.
Publisher
Copernicus GmbH
Reference151 articles.
1. Ahmedzade, T., Horton, J., Mwai, P., and Song, W.: China, Europe, US drought: Is 2022 the driest year recorded?, https://www.bbc.com/news/62751110 (last access: 27 February 2023), 2022. 2. Al Jazeera: “Historic” drought prompts French government into action, https://www.aljazeera.com/news/2022/8/5/france-orders-crisis-task-force-over-historic-drought (last access: 13 March 2023), 2022. 3. Albergel, C., Rüdiger, C., Pellarin, T., Calvet, J.-C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B., and Martin, E.: From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations, Hydrol. Earth Syst. Sci., 12, 1323–1337, https://doi.org/10.5194/hess-12-1323-2008, 2008. 4. Albergel, C., Dorigo, W., Reichle, R. H., Balsamo, G., de Rosnay, P., Muñoz-Sabater, J., Isaksen, L., de Jeu, R., and Wagner, W.: Skill and Global Trend Analysis of Soil Moisture from Reanalyses and Microwave Remote Sensing, J. Hydrometeorol., 13, 1259–1277, https://doi.org/10.1175/JHM-D-12-0161.1, 2013. 5. Almendra-Martín, L., Martínez-Fernández, J., Piles, M., González-Zamora, Á., Benito-Verdugo, P., and Gaona, J.: Analysis of soil moisture trends in Europe using rank-based and empirical decomposition approaches, Glob. Planet. Change, 215, 103868, https://doi.org/10.1016/j.gloplacha.2022.103868, 2022.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|