Aerosol-ozone correlations during dust transport episodes

Author:

Bonasoni P.,Cristofanelli P.,Calzolari F.,Bonafè U.,Evangelisti F.,Stohl A.,van Dingenen R.,Colombo T.,Balkanski Y.

Abstract

Abstract. Its location in the Mediterranean region and its physical characteristics render Mt. Cimone (44°11' N, 10°42' E), the highest peak of the Italian northern Apennines (2165 m asl), particularly suitable to study the transport of air masses from the North African desert area to Europe. During these northward transports 12 dust events were registered in measurements of the aerosol concentration at the station during the period June–December 2000, allowing the study of the impact of mineral dust transports on free tropospheric ozone concentrations, which were also measured at Mt. Cimone. Three-dimensional backward trajectories were used to determine the air mass origin, while TOMS Aerosol Index data for the Mt. Cimone area were used to confirm the presence of absorbing aerosol over the measurement site. A trajectory statistical analysis allowed identifying the main source areas of ozone and aerosols. The analysis of these back trajectories showed that central Europe and North and central Italy are the major pollution source areas for ozone and fine aerosol, whereas the North African desert regions were the most important source areas for coarse aerosol and low ozone concentrations. During dust events, the Mt. Cimone mean volume concentration for coarse particles was 6.18 μm3/cm3 compared to 0.63 μm3/cm3 in dust-free conditions, while the ozone concentrations were 5% to 20% lower than the monthly mean background values. Our observations show that surface ozone concentrations were lower than the background values in air masses coming from North Africa, and when these air masses were also rich in coarse particles, the lowest ozone values were registered. Preliminary results on the impact of the dust events on PM10 values measured in the urban and rural areas of the Po valley are also presented.

Publisher

Copernicus GmbH

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3