Approaches to modelling land erodibility by wind

Author:

Webb Nicholas P.1,McGowan Hamish A.2

Affiliation:

1. Centre for Remote Sensing and Spatial Information Science, School of Geography, Planning and Environmental Management, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia, , Desert Knowledge Cooperative Research Centre, PO Box 3971, Alice Springs, Northern Territory, Australia

2. School of Geography, Planning and Environmental Management, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia

Abstract

Land susceptibility to wind erosion is governed by complex multiscale interactions between soil erodibility and non-erodible roughness elements populating the land surface. Numerous wind erosion modelling systems have been developed to quantify soil loss and dust emissions at the field, regional and global scales. All of these models require some component that defines the susceptibility of the land surface to erosion, ie, land erodibility. The approaches taken to characterizing land erodibility have advanced through time, following developments in empirical and process-based research into erosion mechanics, and the growing availability of moderate to high-resolution spatial data that can be used as model inputs. Most importantly, the performance of individual models is highly dependent on the means by which soil erodibility and surface roughness effects are represented in their land erodibility characterizations. This paper presents a systematic review of a selection of wind erosion models developed over the last 50 years. The review evaluates how land erodibility has been modelled at different spatial and temporal scales, and in doing this the paper identifies concepts behind parameterizations of land erodibility, trends in model development, and recent progress in the representation of soil, vegetation and land management effects on the susceptibility of landscapes to wind erosion. The paper provides a synthesis of the capabilities of the models in assessing dynamic patterns of land erodibility change, and concludes by identifying key areas that require research attention to enhance our capacity to achieve this task.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3