Strong Kelvin wave activity observed during the westerly phase of QBO – a case study
-
Published:2013-04-04
Issue:4
Volume:31
Page:581-590
-
ISSN:1432-0576
-
Container-title:Annales Geophysicae
-
language:en
-
Short-container-title:Ann. Geophys.
Abstract
Abstract. Temperature data from Global Positioning System based Radio Occultation (GPS RO) soundings of the Formosa Satellite mission 3/Constellation Observing System for Meteorology, Ionosphere and Climate (FORMOSAT-3/COSMIC or F-3/C) micro satellites have been investigated in detail to study the Kelvin wave (KW) properties during September 2008 to February 2009 using the two-dimensional Fourier transform. It is observed that there was strong KW activity during November and December 2008; large wave amplitudes are observed from above the tropopause to 40 km – the data limit of F-3/C. KW of wavenumbers E1 and E2 with time periods 7.5 and 13 days, dominated during this period and the vertical wavelengths of these waves varied from 12 to 18 km. This event is very interesting as the QBO during this period was westerly in the lower stratosphere (up to ~ 26 km) and easterly above, whereas, climatological studies show that KW get attenuated during westerlies and their amplitudes maximise during easterlies and westerly shears. In the present study, however, the eastward propagating KW crossed the westerly lower stratosphere as the vertical extent of the westerly wind regime was less than the vertical wavelengths of the KW. The waves might have deposited eastward momentum in the upper stratosphere at 26–40 km, thereby reducing the magnitude of the easterly wind by as much as 10 m s−1. The outgoing long wave radiation (OLR) is also investigated and it is found that these KW are produced due to deep convections in the lower atmosphere.
Publisher
Copernicus GmbH
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics
Reference45 articles.
1. Alexander, S. P., Tsuda, T., Kawatani, Y., and Takahashi, M.: Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: COSMIC observations of wave mean flow interactions, J. Geophys. Res., 113, D24115, https://doi.org/10.1029/2008JD010039, 2008. 2. Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T., Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi, M.: The Quasi-Biennial Oscilaltion., Rev. Geophys., 39, 179–229, https://doi.org/10.1029/1999RG000073, 2001. 3. Canziani, P. O. and Holton, J. R.: Kelvin Waves and the quasi-biennial oscillation: An observational Analysis, J. Geophys. Res., 103, 31509–31521, 1998. 4. Canziani, P. O., Holton, J. R., Fishben, E., Froidevaux, L., and Waters, J. W.: Equatorial Kelvin Waves: A UARS MLS View, J. Atmos. Sci., 51, 3053–3076, 1994. 5. Chang, L. C., Palo, S. E., Liu, H.-L., Fang, T.-W., and Lin, C. S.: Response of the thermosphere and ionosphere to an ultra fast Kelvin wave, J. Geophys. Res., 115, A00G04, https://doi.org/10.1029/2010JA015453, 2010.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|