A Method for Estimating Global Subgrid‐Scale Orographic Gravity‐Wave Temperature Perturbations in Chemistry‐Climate Models

Author:

Weimer M.12ORCID,Wilka C.13ORCID,Kinnison D. E.4ORCID,Garcia R. R.4ORCID,Bacmeister J. T.5ORCID,Alexander M. J.6ORCID,Dörnbrack A.7ORCID,Solomon S.1ORCID

Affiliation:

1. Department of Earth, Atmospheric and Planetary Sciences Massachusetts Institute of Technology Cambridge MA USA

2. Now at Institute of Environmental Physics University of Bremen Bremen Germany

3. Department of Earth System Science Stanford University Stanford CA USA

4. Atmospheric Chemistry Observations & Modeling Laboratory National Center for Atmospheric Research Boulder CO USA

5. Climate and Global Dynamics Laboratory National Center for Atmospheric Research Boulder CO USA

6. NorthWest Research Associates/Colorado Research Associates Boulder CO USA

7. Institut für Physik der Atmosphäre Deutsches Zentrum für Luft und Raumfahrt Oberpfaffenhofen Germany

Abstract

AbstractMany chemical processes depend non‐linearly on temperature. Gravity‐wave‐induced temperature perturbations have been shown to affect atmospheric chemistry, but accounting for this process in chemistry‐climate models has been a challenge because many gravity waves have scales smaller than the typical model resolution. Here, we present a method to account for subgrid‐scale orographic gravity‐wave‐induced temperature perturbations on the global scale for the Whole Atmosphere Community Climate Model. Temperature perturbation amplitudes consistent with the model's subgrid‐scale gravity wave parameterization are derived and then used as a sinusoidal temperature perturbation in the model's chemistry solver. Because of limitations in the parameterization, we explore scaling of between 0.6 and 1 based on comparisons to altitude‐dependent distributions of satellite and reanalysis data, where we discuss uncertainties. We probe the impact on the chemistry from the grid‐point to global scales, and show that the parameterization is able to represent mountain wave events as reported by previous literature. The gravity waves for example, lead to increased surface area densities of stratospheric aerosols. This increases chlorine activation, with impacts on the associated chemical composition. We obtain large local changes in some chemical species (e.g., active chlorine, NOx, N2O5) which are likely to be important for comparisons to airborne or satellite observations, but the changes to ozone loss are more modest. This approach enables the chemistry‐climate modeling community to account for subgrid‐scale gravity wave temperature perturbations interactively, consistent with the internal parameterizations and are expected to yield more realistic interactions and better representation of the chemistry.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3