Double cusp encounter by Cluster: double cusp or motion of the cusp?

Author:

Escoubet C. P.ORCID,Berchem J.,Trattner K. J.,Pitout F.,Richard R.,Taylor M. G. G. T.,Soucek J.ORCID,Grison B.ORCID,Laakso H.,Masson A.ORCID,Dunlop M.,Dandouras I.ORCID,Reme H.,Fazakerley A.ORCID,Daly P.ORCID

Abstract

Abstract. Modelling plasma entry in the polar cusp has been successful in reproducing ion dispersions observed in the cusp at low and mid-altitudes. The use of a realistic convection pattern, when the IMF-By is large and stable, allowed Wing et al. (2001) to predict double cusp signatures that were subsequently observed by the DMSP spacecraft. In this paper we present a cusp crossing where two cusp populations are observed, separated by a gap around 1° Invariant Latitude (ILAT) wide. Cluster 1 (C1) and Cluster 2 (C2) observed these two cusp populations with a time delay of 3 min, and about 15 and 42 min later Cluster 4 (C4) and Cluster 3 (C3) observed, respectively, a single cusp population. A peculiarity of this event is the fact that the second cusp population seen on C1 and C2 was observed at the same time as the first cusp population on C4. This would tend to suggest that the two cusp populations had spatial features similar to the double cusp. Due to the nested crossing of C1 and C2 through the gap between the two cusp populations, C2 being first to leave the cusp and last to re-enter it, these observations are difficult to be explained by two distinct cusps with a gap in between. However, since we observe the cusp in a narrow area of local time post-noon, a second cusp may have been present in the pre-noon sector but could not be observed. On the other hand, these observations are in agreement with a motion of the cusp first dawnward and then back duskward due to the effect of the IMF-By component.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3