Cluster Observation of Ion Outflow in Middle Altitude LLBL/Cusp from Different Origins

Author:

Li BinORCID,Yang Huigen,Sun Jicheng,Hu ZejunORCID,Liu JianjunORCID,Chen XiangcaiORCID,Wang Yongfu,Ren Jie,Yue Chao,Escoubet C. Philippe,Wang Qian,Zong Qiugang

Abstract

The ionosphere is the ionized part of the upper atmosphere that is caused mainly by photoionization by solar extreme ultraviolet (EUV) emission and the atmospheric photochemistry process. The ionospheric ions escape from the ionosphere and populate the Earth’s magnetosphere. In this case study, ion outflows from two different origins were obtained by spacecraft Cluster C1 in the magnetospheric cusp region. One of the outflows was from the reflection of the dispersed solar wind particles. The other was the ionospheric outflow passing through the low latitude boundary layer of the cusp (LLBL/cusp), which was energized by downward Poynting flux. Similar to the reflected solar wind particles, outflowing ionospheric cold ions could also extend to the high-latitude region with magnetic field line convection, which mixed it up with solar wind particles. Based on the Cluster observation in the cusp region, two different origins of the outflowing particles were determined, and their unique mechanisms of formation were discussed. Results suggest that the strong electric field associated with solar wind particle precipitation may additionally accelerate the cold ionospheric ion flow in the LLBL/cusp.

Funder

Natural Science Foundation of China

National Key Research and Development Program of China

Space Science Pilot Project of the Chinese Academy of Sciences

International Cooperation Advance Research on Key Scientific Issues of the International Meridian Project

Shanghai Science and Technology Innovation Action Plan

Shanghai Pujiang Program

Shanxi international science and technology cooperation program

Publisher

MDPI AG

Subject

Materials Chemistry,Chemistry (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3