Continuation of long-term global SO<sub>2</sub> pollution monitoring from OMI to OMPS

Author:

Zhang Yan,Li Can,Krotkov Nickolay A.ORCID,Joiner JoannaORCID,Fioletov VitaliORCID,McLinden ChrisORCID

Abstract

Abstract. Over the past 20 years, advances in satellite remote sensing of pollution-relevant species have made space-borne observations an increasingly important part of atmospheric chemistry research and air quality management. This progress has been facilitated by advanced UV–vis spectrometers, such as the Ozone Monitoring Instrument (OMI) on board the NASA Earth Observing System (EOS) Aura satellite, and continues with new instruments, such as the Ozone Mapping and Profiler Suite (OMPS) on board the NASA–NOAA Suomi National Polar-orbiting Partnership (SNPP) satellite. In this study, we demonstrate that it is possible, using our state-of-the-art principal component analysis (PCA) retrieval technique, to continue the long-term global SO2 pollution monitoring started by OMI with the current and future OMPS instruments that will fly on the NOAA Joint Polar Satellite System (JPSS) 1, 2, 3, and 4 satellites in addition to SNPP, with a very good consistency of retrievals from these instruments. Since OMI SO2 data have been primarily used for (1) providing regional context on air pollution and long-range transport on a daily basis and (2) providing information on point emission sources on an annual basis after data averaging, we focused on these two aspects in our OMI–OMPS comparisons. Four years of retrievals (2012–2015) have been compared for three regions: eastern China, Mexico, and South Africa. In general, the comparisons show relatively high correlations (r = 0. 79–0.96) of daily regional averaged SO2 mass between the two instruments and near-unity regression slopes (0.76–0.97). The annual averaged SO2 loading differences between OMI and OMPS are small (< 0.03 Dobson unit (DU) over South Africa and up to 0.1 DU over eastern China). We also found a very good correlation (r = 0. 92–0.97) in the spatial distribution of annual averaged SO2 between OMI and OMPS over the three regions during 2012–2015. The emissions from ∼ 400 SO2 sources calculated with the two instruments also show a very good correlation (r = ∼ 0.9) in each year during 2012–2015. OMPS-detected SO2 point source emissions are slightly lower than those from OMI, but OMI–OMPS differences decrease with increasing strength of source. The OMI–OMPS SO2 mass differences on a pixel by pixel (daily) basis in each region can show substantial differences. The two instruments have a spatial correlation coefficient of 0.7 or better on < ∼ 50 % of the days. It is worth noting that consistent SO2 retrievals were achieved without any explicit adjustments to OMI or OMPS radiance data and that the retrieval agreement may be further improved by introducing a more comprehensive Jacobian lookup table than is currently used.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3