Estimation of anthropogenic and volcanic SO2 emissions from satellite data in the presence of snow/ice on the ground

Author:

Fioletov Vitali E.ORCID,McLinden Chris A.ORCID,Griffin DeboraORCID,Krotkov Nickolay A.ORCID,Li CanORCID,Joiner JoannaORCID,Theys Nicolas,Carn SimonORCID

Abstract

Abstract. Early versions of satellite nadir-viewing UV SO2 data products did not explicitly account for the effects of snow/ice on retrievals. Snow-covered terrain, with its high reflectance in the UV, typically enhances satellite sensitivity to boundary layer pollution. However, a significant fraction of high-quality cloud-free measurements over snow is currently excluded from analyses. This leads to increased uncertainties of satellite emission estimates and potential seasonal biases due to the lack of data in winter months for some high-latitudinal sources. In this study, we investigated how Ozone Monitoring Instrument (OMI) and TROPOspheric Monitoring Instrument (TROPOMI) satellite SO2 measurements over snow-covered surfaces can be used to improve the annual emissions reported in our SO2 emissions catalogue (version 2; Fioletov et al., 2023). Only 100 out of 759 sources listed in the catalogue have 10 % or more of the observations over snow. However, for 40 high-latitude sources, more than 30 % of measurements suitable for emission calculations were made over snow-covered surfaces. For example, in the case of Norilsk, the world's largest SO2 point-source, annual emission estimates in the SO2 catalogue were based only on 3–4 summer months, while the addition of data for snow conditions extends that period to 7 months. Emissions in the SO2 catalogue were based on satellite measurements of SO2 slant column densities (SCDs) that were converted to vertical column densities (VCDs) using site-specific clear-sky air mass factors (AMFs), calculated for snow-free conditions. The same approach was applied to measurements with snow on the ground whereby a new set of constant, site-specific, clear sky with snow AMFs was created, and these were applied to the measured SCDs. Annual emissions were then estimated for each source considering (i) only clear-sky and snow-free days, (ii) only clear-sky with snow days, and (iii) a merged dataset (snow and snow-free conditions). For individual sources, the difference between emissions estimated for snow and snow-free conditions is within ±20 % for three-quarters of smelters and oil and gas sources and with practically no systematic bias. This is excellent consistency given that there is typically a factor of 3–5 difference between AMFs for snow and snow-free conditions. For coal-fired power plants, however, emissions estimated for snow conditions are on average 25 % higher than for snow-free conditions; this difference is likely real and due to larger production (consumption of coal) and emissions in wintertime.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference79 articles.

1. Bauduin, S., Clarisse, L., Clerbaux, C., Hurtmans, D. and Coheur, P.-F.: IASI observations of sulfur dioxide (SO2) in the boundary layer of Norilsk, J. Geophys. Res.-Atmos., 119, 4253–4263, https://doi.org/10.1002/2013JD021405, 2014.

2. Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V. V., Chance, K. V., and Goede, A. P. H.: SCIAMACHY: Mission objectives and measurement modes, J. Atmos. Sci., 56, 127–150, 1999.

3. Bramstedt, K., Richter, A., Van Roozendael, M., and De Smedt, I.: Comparisons of SCIAMACHY sulfur dioxide observations, Eur. Sp. Agency, Special Publ. ESA SP, 85–88, https://ui.adsabs.harvard.edu/abs/2004ESASP.562E..11B/abstract (last access: 8 November 2023), 2004.

4. Callies, J., Corpaccioli, E., Eisinger, M., Hahne, A., and Lefebvre, A.: GOME-2-Metop's second-generation sensor for operational ozone monitoring, ESA bulletin, 102, https://www.esa.int/esapub/bulletin/bullet102/Callies102.pdf, last access: 8 November 2023, 2000.

5. Carn, S. A., Krotkov, N. A., Yang, K., and Krueger, A. J.: Measuring global volcanic degassing with the Ozone Monitoring Instrument (OMI), Geol. Soc. London Spec. Publ., 380, 229–257, https://doi.org/10.1144/SP380.12, 2013.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3