Towards rockfall forecasting through observing deformations and listening to microseismic emissions

Author:

Arosio D.,Longoni L.,Papini M.,Scaioni M.,Zanzi L.,Alba M.

Abstract

Abstract. Reliable forecasting of rockfall is a challenging task, mainly because of the lack of clearly noticeable forerunners as well as due to the geological and geo-mechanical complexity of the rock movements involved. Conventional investigation devices still present some drawbacks, since most measurements are generally carried out at isolated locations as well as on the surface only. Novel remote-sensing monitoring instruments, such as Terrestrial Laser Scanning (TLS) and Ground-Based Interferometric Synthetic Aperture Radars (GB-InSAR), are capable of inspecting an unstable slope with a high spatial and temporal frequency. But they still rely on measurements of the failure surface, from which displacement or velocity are measured. On the contrary, acoustic emission/microseismic monitoring may provide a deeper insight of stress and strain conditions within the sub-surface rock mass. In fact, the capability to detect microseismic events originating within an unstable rock mass is a key element in locating growing cracks and, as a consequence, in understanding the slide kinematics and triggering mechanisms of future collapses. Thus, a monitoring approach based on the combination of classical methodologies, remote sensing techniques and microseismic investigations would be a promising research field. In the present paper we discuss the technologies and we illustrate some experiments conducted in the framework of a project whose final goal is the installation of an integrated monitoring and alerting system on a rockface nearby Lecco (Italy). In particular, we present a review of performances and applications of remote sensing devices and some results concerning a terrestrial laser scanner preliminary campaign. Then, we report findings regarding amplitude, frequency content and rate of signals recorded during an in situ test carried out to evaluate the performance of three different microseismic transducers.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3