Abstract
AbstractRockfalls are among the natural hazards that endanger infrastructure, cause major economic disruptions, and threaten human lives. These phenomena result from long-term geological processes such as tectonic rock deformation or weathering, but the actual rockfall itself occurs suddenly, usually without warning. The triggering mechanisms are complex and difficult to trace. In this study, we investigated the triggering mechanisms of more than 2100 small rockfalls that occurred in 2021 in Slovenia, Europe, along the 51,000 km long national road network. We analyzed their spatial and temporal characteristics, as well as the triggering mechanisms of their occurrence, based on different weather scenarios. Multiple data mining methods were used to investigate triggering conditions, and scenario analyses were used to understand the triggering mechanisms. Most small rockfalls in 2021 were recorded in winter and spring at a density of 1 rockfall per 10 km2. The results show that winter weather conditions have the greatest potential for triggering small rockfalls in Slovenia, both in terms of spatial extent and frequency of triggering weather conditions. The analysis showed that summer storms are an important but indeterminant factor for the occurrence of small rockfalls. Among the scenarios tested, the winter scenario, which includes a combination of antecedent precipitation, snowmelt, and freeze‒thaw cycles a few days before the event, was able to predict 72% of the events in the colder season.
Funder
Javna Agencija za Raziskovalno Dejavnost RS
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献