Atmospheric water transport connectivity within and between ocean basins and land

Author:

Dey DipanjanORCID,Aldama Campino AitorORCID,Döös KristoferORCID

Abstract

Abstract. The global atmospheric water transport from the net evaporation to the net precipitation regions has been traced using Lagrangian trajectories. A matrix has been constructed by selecting various group of trajectories based on their surface starting (net evaporation) and ending (net precipitation) positions to show the connectivity of the 3-D atmospheric water transport within and between the three major ocean basins and the global landmass. The analysis reveals that a major portion of the net evaporated water precipitates back into the same region, namely 67 % for the Indian Ocean, 64 % for the Atlantic Ocean, 85 % for the Pacific Ocean and 72 % for the global landmass. It has also been calculated that 58 % of the net terrestrial precipitation was sourced from land evaporation. The net evaporation from the subtropical regions of the Indian, Atlantic and Pacific oceans is found to be the primary source of atmospheric water for precipitation over the Intertropical Convergence Zone (ITCZ) in the corresponding basins. The net evaporated waters from the subtropical and western Indian Ocean were traced as the source for precipitation over the South Asian and eastern African landmass, while Atlantic Ocean waters are responsible for rainfall over North Asia and western Africa. Atlantic storm tracks were identified as the carrier of atmospheric water that precipitates over Europe, while the Pacific storm tracks were responsible for North American, eastern Asian and Australian precipitation. The bulk of South and Central American precipitation is found to have its source in the tropical Atlantic Ocean. The land-to-land atmospheric water transport is pronounced over the Amazon basin, western coast of South America, Congo basin, northeastern Asia, Canada and Greenland. The ocean-to-land and land-to-ocean water transport through the atmosphere was computed to be 2×109 and 1×109 kg s−1, respectively. The difference between them (net ocean-to-land transport), i.e. 1×109 kg s−1, is transported to land. This net transport is approximately the same as found in previous estimates which were calculated from the global surface water budget.

Funder

Vetenskapsrådet

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3