A Lagrangian Perspective on the Atlantic and Pacific Precipitation‐Evaporation Asymmetry

Author:

Craig P. M.1ORCID,Ferreira D.1ORCID,Methven J.1ORCID

Affiliation:

1. Department of Meteorology University of Reading Reading UK

Abstract

AbstractTotal precipitation minus evaporation (P − E) for the Atlantic is negative while it is approximately neutral for the Pacific. This has frequently been attributed to westward Atlantic‐to‐Pacific moisture flux across Central America. However, this Eulerian perspective has limited scope as it does not consider the origins of the water crossing ocean drainage basin boundaries and the possibility that it has remote sources. By using an airmass trajectory model, we take a Lagrangian approach to investigate the origin of the moisture contributing to fluxes, Qn, across these boundaries. Qn is partitioned into contributions from each basin, the stratosphere and trajectories not assigned an origin. The total Qn across each basin boundary are mainly composed of contributions from the two adjacent basins while remote or stratospheric origins make small contributions. Partitioning Qn shows that the atmosphere exports ∼1 Sv water vapor from the Atlantic, Indian and Pacific basins with a similar quantity imported to the Pacific. However, Atlantic and Indian atmospheric imports are ∼0.5–0.6 Sv. Normalizing by drainage basin perimeters reveals that the import to these basins is half as efficient as Pacific import. Partitioning P − E into contributions from other basins shows that Pacific moisture import is dominated by trajectories with Indian basin origin (∼38%, or 0.43 Sv, of total Pacific import). The import is greatest in boreal summer due to the Asian monsoon flow and stronger westward flux across Central America. These anomalies dominate the difference in annual imports between the Pacific, Atlantic and Indian basins.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3