Technical Note: Combining undisturbed soil monoliths for hydrological indoor experiments

Author:

Ramler DavidORCID,Strauss PeterORCID

Abstract

Abstract. An important decision in soil hydrological research is whether to conduct experiments outdoors or indoors. Both approaches have their advantages and trade-offs. Using undisturbed soil monoliths combines some of the advantages of outdoor and indoor experiments; however, there are often size limitations. Acquiring large monoliths necessitates heavy machinery, which is time-, cost-, and labor-intensive. Small- to medium-sized soil blocks, however, can be obtained using less demanding methods. A promising approach is the combination of smaller blocks to form a single large monolith, thereby optimizing cost and labor efficiency as well as representativity and upscaling potential. To this end, we compared the runoff properties of medium-sized (1×0.5×0.35 m) grassland soil monoliths cut in half and recombined with uncut blocks. We conducted artificial runoff experiments and analyzed the chemical composition and amount of outflow from four flow pathways (surface runoff, subsurface interflow, percolating water, lateral flow). Furthermore, we studied surface runoff velocity parameters using a salt tracer. Our results suggest that the effects of the recombination procedure are negligible compared to the variation in the data caused by the inherent soil heterogeneity. We propose that the benefits of combining soil monoliths outweigh the potential disadvantages.

Funder

Amt der NÖ Landesregierung

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3