Convergence of mechanistic modeling and artificial intelligence in hydrologic science and engineering

Author:

Muñoz-Carpena RafaelORCID,Carmona-Cabrero AlvaroORCID,Yu ZiwenORCID,Fox GareyORCID,Batelaan OkkeORCID

Abstract

Hydrology is a mature physical science based on application of first principles. However, the water system is complex and its study requires analysis of increasingly large data available from conventional and novel remote sensing and IoT sensor technologies. New data-driven approaches like Artificial Intelligence (AI) and Machine Learning (ML) are attracting much “hype” despite their apparent limitations (transparency, interpretability, ethics). Some AI/ML applications lack in addressing explicitly important hydrological questions, focusing mainly on “black-box” prediction without providing mechanistic insights. We present a typology of four main types of hydrological problems based on their dominant space and time scales, review their current tools and challenges, and identify important opportunities for AI/ML in hydrology around three main topics: data management, insights and knowledge extraction, and modelling structure. Instead of just for prediction, we propose that AI/ML can be a powerful inductive and exploratory dimension-reduction tool within the rich hydrological toolchest to support the development of new theories that address standing gaps in changing hydrological systems. AI/ML can incorporate other forms of structured and non-structured data and traditional knowledge typically not considered in process-based models. This can help us further advance process-based understanding, forecasting and management of hydrological systems, particularly at larger integrated system scales with big models. We call for reimagining the original definition of AI in hydrology to incorporate not only today’s main focus on learning, but on decision analytics and action rules, and on development of autonomous machines in a continuous cycle of learning and refinement in the context of strong ethical, legal, social, and economic constrains. For this, transdisciplinary communities of knowledge and practice will need to be forged with strong investment from the public sector and private engagement to protect water as a common good under accelerated demand and environmental change.

Funder

National Institute of Food and Agriculture

University of Florida

Multidisciplinary University Research Initiative

Publisher

Public Library of Science (PLoS)

Reference179 articles.

1. Hydrologic science: A distinct geoscience;PS Eagleson;Reviews of Geophysics,1991

2. 100 Years of Progress;CD Peters-Lidard;Hydrology. Meteorological Monographs,2018

3. A history of rain gauges;I. Strangeways;Weather,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3