Vertical profile of δ<sup>18</sup>OOO from the middle stratosphere to lower mesosphere from SMILES spectra

Author:

Sato T. O.ORCID,Sagawa H.ORCID,Yoshida N.ORCID,Kasai Y.

Abstract

Abstract. Ozone is known to have large oxygen isotopic enrichments of about 10% in the middle stratosphere; however, there have been no reports of ozone isotopic enrichments above the middle stratosphere. We derived an enrichment δ18OOO in the stratosphere and the lower mesosphere from observations of the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) onboard the International Space Station (ISS) using a retrieval algorithm optimized for the isotopic ratio. The retrieval algorithm includes (i) an a priori covariance matrix constrained by oxygen isotopic ratios in ozone, (ii) an optimization of spectral windows for ozone isotopomers and isotopologues, and (iii) common tangent height information for all windows. The δ18OOO by averaging the SMILES measurements at the latitude range of 20 to 40° N from February to March in 2010 with solar zenith angle < 80° was 13% (at 32 km) with the systematic error of about 5%. SMILES and past measurements were in good agreement, with δ18OOO increasing with altitude between 30 and 40 km. The vertical profile of δ18OOO obtained in this study showed an increase and a decrease with altitude in the stratosphere and mesosphere, respectively. The δ18OOO peak, 18%, is found at the stratopause. The δ18OOO has a positive correlation with temperature in the range of 220–255 K, indicating that temperature can be a dominant factor to control the vertical profile of δ18OOO in the stratosphere and mesosphere. This is the first report of the observation of δ18OOO over a wide altitude range extending from the stratosphere to the mesosphere (28–57 km).

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3