Reviews and syntheses: Carbon use efficiency from organisms to ecosystems – definitions, theories, and empirical evidence
-
Published:2018-10-09
Issue:19
Volume:15
Page:5929-5949
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Manzoni StefanoORCID, Čapek Petr, Porada PhilippORCID, Thurner MartinORCID, Winterdahl MattiasORCID, Beer ChristianORCID, Brüchert Volker, Frouz Jan, Herrmann Anke M.ORCID, Lindahl Björn D., Lyon Steve W., Šantrůčková HanaORCID, Vico GiuliaORCID, Way Danielle
Abstract
Abstract. The cycling of carbon (C) between the Earth surface and
the atmosphere is controlled by biological and abiotic processes that
regulate C storage in biogeochemical compartments and release to the
atmosphere. This partitioning is quantified using various forms of C-use
efficiency (CUE) – the ratio of C remaining in a system to C entering that
system. Biological CUE is the fraction of C taken up allocated to
biosynthesis. In soils and sediments, C storage depends also on abiotic processes, so the term C-storage
efficiency (CSE) can be used. Here we first review and reconcile CUE and CSE
definitions proposed for autotrophic and heterotrophic organisms and
communities, food webs, whole ecosystems and watersheds, and soils and
sediments using a common mathematical framework. Second, we identify general
CUE patterns; for example, the actual CUE increases with improving growth
conditions, and apparent CUE decreases with increasing turnover. We then
synthesize > 5000 CUE estimates showing that CUE decreases with
increasing biological and ecological organization – from unicellular to
multicellular organisms and from individuals to ecosystems. We conclude that
CUE is an emergent property of coupled biological–abiotic systems, and it
should be regarded as a flexible and scale-dependent index of the capacity of
a given system to effectively retain C.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference92 articles.
1. Alin, S. R. and Johnson, T. C.: Carbon cycling in large lakes of the world: A
synthesis of production, burial, and lake-atmosphere exchange estimates,
Global Biogeochem. Cy., 21, GB3002, https://doi.org/10.1029/2006gb002881, 2007. 2. Allison, S. D.: Modeling adaptation of carbon use efficiency in microbial
communities, Front. Microbiol., 5, 1–9, https://doi.org/10.3389/fmicb.2014.00571,
2014. 3. Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-carbon
response to warming dependent on microbial physiology, Nat. Geosci., 3,
336–340, 2010. 4. Anderson, T. R., Hessen, D. O., Elser, J. J., and Urabe, J.: Metabolic
stoichiometry and the fate of excess carbon and nutrients in consumers,
Am. Nat., 165, 1–15, 2005. 5. Atkin, O. K., Bloomfield, K. J., Reich, P. B., Tjoelker, M. G., Asner, G.
P., Bonal, D., Bonisch, G., Bradford, M. G., Cernusak, L. A., Cosio, E. G.,
Creek, D., Crous, K. Y., Domingues, T. F., Dukes, J. S., Egerton, J. J. G.,
Evans, J. R., Farquhar, G. D., Fyllas, N. M., Gauthier, P. P. G., Gloor, E.,
Gimeno, T. E., Griffin, K. L., Guerrieri, R., Heskel, M. A., Huntingford,
C., Ishida, F. Y., Kattge, J., Lambers, H., Liddell, M. J., Lloyd, J., Lusk,
C. H., Martin, R. E., Maksimov, A. P., Maximov, T. C., Malhi, Y., Medlyn, B.
E., Meir, P., Mercado, L. M., Mirotchnick, N., Ng, D., Niinemets, U.,
O'Sullivan, O. S., Phillips, O. L., Poorter, L., Poot, P., Prentice, I. C.,
Salinas, N., Rowland, L. M., Ryan, M. G., Sitch, S., Slot, M., Smith, N. G.,
Turnbull, M. H., VanderWel, M. C., Valladares, F., Veneklaas, E. J.,
Weerasinghe, L. K., Wirth, C., Wright, I. J., Wythers, K. R., Xiang, J.,
Xiang, S., and Zaragoza-Castells, J.: Global variability in leaf respiration
in relation to climate, plant functional types and leaf traits, New
Phytol., 206, 614–636, https://doi.org/10.1111/nph.13253, 2015.
Cited by
115 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|