The role of phosphorus dynamics in tropical forests – a modeling study using CLM-CNP

Author:

Yang X.,Thornton P. E.ORCID,Ricciuto D. M.ORCID,Post W. M.

Abstract

Abstract. Tropical forests play a significant role in the global carbon cycle and global climate. However, tropical carbon cycling and the feedbacks from tropical ecosystems to the climate system remain critical uncertainties in the current generation of carbon–climate models. One of the major uncertainties comes from the lack of representation of phosphorus (P), currently believed to be the most limiting nutrient in tropical regions. Here we introduce P dynamics and C–N–P interactions into the CLM4-CN (Community Land Model version 4 with prognostic Carbon and Nitrogen) model and investigate the role of P cycling in controlling the productivity of tropical ecosystems. The newly developed CLM-CNP model includes all major biological and geochemical processes controlling P availability in soils and the interactions between C, N, and P cycles. Model simulations at sites along a Hawaiian soil chronosequence indicate that the introduction of P limitation greatly improved the model performance at the P-limited site. The model is also able to capture the shift in nutrient limitation along this chronosequence (from N limited to P limited), as shown in the comparison of model-simulated plant responses to fertilization with the observed data. Model simulations at Amazonian forest sites show that CLM-CNP is capable of capturing the overall trend in NPP (net primary production) along the P availability gradient. This comparison also suggests a significant interaction between nutrient limitation and land use history. Model experiments under elevated atmospheric CO2 ([CO2]) conditions suggest that tropical forest responses to increasing [CO2] will interact strongly with changes in the P cycle. We highlight the importance of two feedback pathways (biochemical mineralization and desorption of secondary mineral P) that can significantly affect P availability and determine the extent of P limitation in tropical forests under elevated [CO2]. Field experiments with elevated CO2 are therefore needed to help quantify these important feedbacks. CO2 doubling model experiments show that tropical forest response to elevated [CO2] can only be predicted if the interactions between C cycle and nutrient dynamics are well understood and represented in models. Predictive modeling of C–nutrient interactions will have important implications for the prediction of future carbon uptake and storage in tropical ecosystems and global climate change.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Cited by 167 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3