Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane
-
Published:2015-10-19
Issue:10
Volume:8
Page:4383-4397
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Thompson D. R.ORCID, Leifer I.ORCID, Bovensmann H.ORCID, Eastwood M., Fladeland M., Frankenberg C.ORCID, Gerilowski K., Green R. O., Kratwurst S.ORCID, Krings T., Luna B., Thorpe A. K.ORCID
Abstract
Abstract. Localized anthropogenic sources of atmospheric CH4 are highly uncertain and temporally variable. Airborne remote measurement is an effective method to detect and quantify these emissions. In a campaign context, the science yield can be dramatically increased by real-time retrievals that allow operators to coordinate multiple measurements of the most active areas. This can improve science outcomes for both single- and multiple-platform missions. We describe a case study of the NASA/ESA CO2 and MEthane eXperiment (COMEX) campaign in California during June and August/September 2014. COMEX was a multi-platform campaign to measure CH4 plumes released from anthropogenic sources including oil and gas infrastructure. We discuss principles for real-time spectral signature detection and measurement, and report performance on the NASA Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). AVIRIS-NG successfully detected CH4 plumes in real-time at Gb s−1 data rates, characterizing fugitive releases in concert with other in situ and remote instruments. The teams used these real-time CH4 detections to coordinate measurements across multiple platforms, including airborne in situ, airborne non-imaging remote sensing, and ground-based in situ instruments. To our knowledge this is the first reported use of real-time trace-gas signature detection in an airborne science campaign, and presages many future applications. Post-analysis demonstrates matched filter methods providing noise-equivalent (1σ) detection sensitivity for 1.0 % CH4 column enhancements equal to 141 ppm m.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference69 articles.
1. Ambrosia, V., Wegener, S., Zajkowski, T., Sullivan, D., Buechel, S., Enomoto, F., Lobitz, B., Johan, S., Brass, J., and Hinkley, E.: The Ikhana unmanned airborne system (UAS) western states fire imaging missions: from concept to reality (2006–2010), Geocarto International, 26, 85–101, 2011. 2. Ambrosia, V. G., Wegener, S. S., Sullivan, D. V., Buechel, S. W., Dunagan, S. E., Brass, J. A., Stoneburner, J., and Schoenung, S. M.: Demonstrating UAV-acquired real-time thermal data over fires, Photogramm. Eng. Rem. S., 69, 391–402, 2003. 3. Aubrey, A., Frankenberg, C., Green, R., Eastwood, M., Thompson, D., and Thorpe, A. K.: Crosscutting airborne remote sensing technologies for oil and gas and Earth science applications, in: Offshore Technology Conference, Houston, Texas, USA, 2015. 4. Boardman, J. W. and Kruse, F. A.: Analysis of imaging spectrometer data using n-dimensional geometry and a mixture-tuned matched filtering approach, IEEE T. Geosci. Remote, 49, 4138–4152, 2011. 5. Bojinski, S., Schlaepfer, D., Schaepman, M. E., and Keller, J.: Aerosol mapping over rugged heterogeneous terrain with imaging spectrometer data, in: International Symposium on Optical Science and Technology, International Society for Optics and Photonics, 108–119, 2002.
Cited by
118 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|