Performance and sensitivity of column-wise and pixel-wise methane retrievals for imaging spectrometers

Author:

Ayasse Alana K.,Cusworth DanielORCID,O'Neill Kelly,Fisk Justin,Thorpe Andrew K.ORCID,Duren Riley

Abstract

Abstract. Strong methane point source emissions generate large atmospheric concentrations that can be detected and quantified with infrared remote sensing and retrieval algorithms. Two standard and widely used retrieval algorithms for one class of observing platform, imaging spectrometers, include pixel-wise and column-wise approaches. In this study, we assess the performance of both approaches using the airborne imaging spectrometer (Global Airborne Observatory) observations of two extensive controlled-release experiments. We find that the column-wise retrieval algorithm is sensitive to the flight line length and can have a systematic low bias with short flight lines, which is not present in the pixel-wise retrieval algorithm. However, the pixel-wise retrieval is very computationally expensive, and the column-wise retrieval algorithms can produce good results when the flight line length is sufficiently long. Lastly, this study examines the methane plume detection performance of the Global Airborne Observatory with a column-wise retrieval algorithm and finds minimum detection limits of between 9 of 10 kg h−1 and 90 % probability of detection between 10 and 45 kg h−1. These results present a framework of rules for guiding proper concentration retrieval selection given conditions at the time of observation in order to ensure robust detection and quantification.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference26 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3