Cloud retrievals from satellite data using optimal estimation: evaluation and application to ATSR

Author:

Poulsen C. A.,Watts P. D.,Thomas G. E.,Sayer A. M.,Siddans R.,Grainger R. G.,Lawrence B. N.,Campmany E.,Dean S. M.,Arnold C.

Abstract

Abstract. Clouds play an important role in balancing the Earth's radiation budget. Clouds reflect sunlight which cools the Earth, and also trap infrared radiation in the same manner as greenhouse gases. Changes in cloud cover and cloud properties over time can have important consequences for climate. The Intergovernmental Panel for Climate Change (IPCC) has identified current gaps in the understanding of clouds and related climate feedback processes as a leading cause of uncertainty in forecasting climate change. In this paper we present an algorithm that uses optimal estimation to retrieve cloud parameters from satellite multi-spectral imager data, in particular the Along-Track Scanning Radiometers ATSR-2 and AATSR. The cloud parameters retrieved are the cloud top pressure, cloud optical depth, cloud effective radius, cloud fraction and cloud phase. Importantly, the technique also provides estimated errors along with the retrieved values and quantifies the consistency between retrieval representation of cloud and satellite radiances. This should enable the effective use of the products for comparison with climate models or for exploitation via data assimilation. The technique is evaluated by performing retrieval simulations for a variety of simulated single layer and multi-layer conditions. Examples of applying the algorithm to ATSR-2 flight data are presented and the sensitivity of the retrievals assessed. This algorithm has been applied to both ATSR-2 and AATSR visible and infrared measurements in the context of the GRAPE (Global Retrieval and cloud Product Evaluation) project to produce a 14 year consistent record for climate research (Sayer et al., 2010).

Publisher

Copernicus GmbH

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3