A High-Spectral-Resolution Radiative Transfer Model for Simulating Multilayered Clouds and Aerosols in the Infrared Spectral Region

Author:

Wang Chenxi1,Yang Ping1,Liu Xu2

Affiliation:

1. Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

2. Science Directorate, NASA Langley Research Center, Hampton, Virginia

Abstract

Abstract A fast and flexible model is developed to simulate the transfer of thermal infrared radiation at wavenumbers from 700 to 1300 cm−1 with a spectral resolution of 0.1 cm−1 for scattering–absorbing atmospheres. In a single run and at multiple user-defined levels, the present model simulates radiances at different viewing angles and fluxes. Furthermore, the model takes into account complicated and realistic scenes in which ice cloud, water cloud, and mineral dust layers may coexist within an atmospheric column. The present model is compared to a rigorous reference model, the 32-stream Discrete Ordinate Radiative Transfer model (DISORT) code. For an atmosphere with three scattering layers (water, ice, and mineral dust), the root-mean-square error of the simulated brightness temperatures at the top of the atmosphere is approximately 0.05 K, and the relative flux errors at the boundary and internal levels are much smaller than 1%. Within the same computing environment, the fast model runs more than 10 000, 6000, and 4000 times faster than DISORT under single-layer, two-layer, and three-layer cloud–aerosol conditions, respectively. With its computational efficiency and accuracy, the present model may optimally facilitate the forward radiative transfer simulations involved in remote sensing implementations based on high-spectral-resolution and narrowband infrared measurements and in the data assimilation applications of the weather forecasting system. The selected 0.1-cm−1 spectral resolution is an obstacle to extending the present model to strongly absorptive bands (e.g., 600–700 cm−1). However, the present clear-sky module can be substituted by a more accurate model for specific applications involving spectral bands with strong absorption.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3