A Spectral Data Compression (SDCOMP) Radiative Transfer Model for High-Spectral-Resolution Radiation Simulations

Author:

Liu Chao1,Yao Bin1,Natraj Vijay2,Kopparla Pushkar3,Weng Fuzhong4,Le Tianhao5,Shia Run-Lie5,Yung Yuk L.5

Affiliation:

1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, and School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing, China

2. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

3. Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan

4. Chinese Academy of Meteorological Sciences, Beijing, China

5. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California

Abstract

Abstract With the increasing use of satellite and ground-based high-spectral-resolution (HSR) measurements for weather and climate applications, accurate and efficient radiative transfer (RT) models have become essential for accurate atmospheric retrievals, for instrument calibration, and to provide benchmark RT solutions. This study develops a spectral data compression (SDCOMP) RT model to simulate HSR radiances in both solar and infrared spectral regions. The SDCOMP approach “compresses” the spectral data in the optical property and radiance domains, utilizing principal component analysis (PCA) twice to alleviate the computational burden. First, an optical-property-based PCA is performed for a given atmospheric scenario (atmospheric, trace gas, and aerosol profiles) to simulate relatively low-spectral-resolution radiances at a small number of representative wavelengths. Second, by using precalculated principal components from an accurate radiance dataset computed for a large number of atmospheric scenarios, a radiance-based PCA is carried out to extend the low-spectral-resolution results to desired HSR results at all wavelengths. This procedure ensures both that individual monochromatic RT calculations are efficiently performed and that the number of such computations is optimized. SDCOMP is approximately three orders of magnitude faster than numerically exact RT calculations. The resulting monochromatic radiance has relative errors less than 0.2% in the solar region and brightness temperature differences less than 0.1 K for over 95% of the cases in the infrared region. The efficiency and accuracy of SDCOMP not only make it useful for analysis of HSR measurements, but also hint at the potential for utilizing this model to perform RT simulations in mesoscale numerical weather and general circulation models.

Funder

National Natural Science Foundation of China

NASA Earth Science US Participating Investigator program

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3