Comment on “An approach to sulfate geoengineering with surface emissions of carbonyl sulfide” by Quaglia et al. (2022)

Author:

von Hobe MarcORCID,Brühl Christoph,Lennartz Sinikka T.ORCID,Whelan Mary E.,Kaushik AleyaORCID

Abstract

Abstract. Solar radiation management through artificially increasing the amount of stratospheric sulfate aerosol is being considered as a possible climate engineering method. To overcome the challenge of transporting the necessary amount of sulfur to the stratosphere, Quaglia and co-workers suggest deliberate emissions of carbonyl sulfide (OCS), a long-lived precursor of atmospheric sulfate. In their paper, published in Atmospheric Chemistry and Physics in 2022, they outline two scenarios with OCS emissions either at the Earth's surface or in the tropical upper troposphere and calculate the expected radiative forcing using a climate model. In our opinion, the study (i) neglects a significantly higher surface uptake that will inevitably be induced by the elevated atmospheric OCS concentrations and (ii) overestimates the net cooling effect of this OCS geoengineering approach due to some questionable parameterizations and assumptions in the radiative forcing calculations. In this commentary, we use state-of-the-art models to show that at the mean atmospheric OCS mixing ratios of the two emissions scenarios, the terrestrial biosphere and the oceans are expected to take up more OCS than is being released to reach these levels. Using chemistry climate models with a long-standing record for estimating the climate forcing of OCS and stratospheric aerosols, we also show that the net radiative forcing of the emission scenarios suggested by Quaglia and co-workers is smaller than suggested and insufficient to offset any significant portion of anthropogenically induced climate change. Our conclusion is that a geoengineering approach using OCS will not work under any circumstances and should not be considered further.

Funder

NOAA Research

Jet Propulsion Laboratory

Bundesministerium für Bildung und Forschung

Niedersächsisches Ministerium für Wissenschaft und Kultur

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3